适用于自洽强度方法的冲击加载-再加载实验技术

俞宇颖 谭叶 谭华 戴诚达 彭建祥 李雪梅 吴强 王翔

俞宇颖, 谭叶, 谭华, 戴诚达, 彭建祥, 李雪梅, 吴强, 王翔. 适用于自洽强度方法的冲击加载-再加载实验技术[J]. 爆炸与冲击, 2016, 36(4): 491-496. doi: 10.11883/1001-1455(2016)04-0491-06
引用本文: 俞宇颖, 谭叶, 谭华, 戴诚达, 彭建祥, 李雪梅, 吴强, 王翔. 适用于自洽强度方法的冲击加载-再加载实验技术[J]. 爆炸与冲击, 2016, 36(4): 491-496. doi: 10.11883/1001-1455(2016)04-0491-06
Yu Yuying, Tan Ye, Tan Hua, Dai Chengda, Peng Jianxiang, Li Xuemei, Wu Qiang, Wang Xiang. A shock-reload wave technique for dynamic strength study of materials at high pressure by self-consistent method[J]. Explosion And Shock Waves, 2016, 36(4): 491-496. doi: 10.11883/1001-1455(2016)04-0491-06
Citation: Yu Yuying, Tan Ye, Tan Hua, Dai Chengda, Peng Jianxiang, Li Xuemei, Wu Qiang, Wang Xiang. A shock-reload wave technique for dynamic strength study of materials at high pressure by self-consistent method[J]. Explosion And Shock Waves, 2016, 36(4): 491-496. doi: 10.11883/1001-1455(2016)04-0491-06

适用于自洽强度方法的冲击加载-再加载实验技术

doi: 10.11883/1001-1455(2016)04-0491-06
基金项目: 

国家自然科学基金项目 10972206

国家自然科学基金项目 11172281

详细信息
    作者简介:

    俞宇颖(1976—),男,博士,副研究员, yuyinyu@caep.cn

  • 中图分类号: O347;O521.2

A shock-reload wave technique for dynamic strength study of materials at high pressure by self-consistent method

  • 摘要: 针对自洽强度方法存在的冲击加载-再加载的难题,提出了一种采用较高硬度材料为支撑制作组合飞片的简便方法。利用该方法获得了铝、锡和锆基金属玻璃较理想的冲击加载-再加载粒子速度剖面,验证了该方法的有效性。由本文获得的冲击加载-再加载粒子速度剖面,并根据自洽方法,计算得到了铝、锡和锆基金属玻璃再加载过程剪应力变化数据。进一步分析表明,在本文涉及的压力范围内,仅由冲击加载-卸载实验得到的铝、锡和锆基金属玻璃屈服强度将比实际结果降低20%~50%。因此,在采用自洽方法计算高压强度时,冲击加载-再加载数据不可或缺。
  • 图  1  实验装置及波系作用示意图

    Figure  1.  Schematic diagrams of experimental setup and wave interactions

    图  2  LY12铝样品/窗口界面粒子速度剖面

    Figure  2.  Particle velocity profiles measured at LY12 aluminum sample/window interface

    图  3  锡样品/窗口界面粒子速度剖面

    Figure  3.  Particle velocity profiles measured at Sn sample/window interface

    图  4  锆基金属玻璃样品/窗口界面粒子速度剖面

    Figure  4.  Particle velocity profile measured at Zr-based bulk metallic glass sample/window interface

    图  5  LY12铝从冲击压缩态再加载和卸载过程的拉格朗日纵波和体波声速随粒子速度的变化

    Figure  5.  Longitudinal and bulk Lagrangian wave speeds during reloading and unloading from shocked state of LY12 aluminum

    表  1  平板冲击实验条件及结果

    Table  1.   Experimental conditions and results for planar plate-impact experiments

    实验编号 样品材料 Hs/mm 支撑材料 hs/mm Ds/(km·s-1) p/GPa (τc-τH)/GPa
    1 LY12铝 1.445 TC4 3.01 3.67 38.3 0.73
    2 LY12铝 1.465 Ta/TC4 3.05/2.09 4.39 48.5 0.77
    3 2.013 45钢 4.50 2.49 28.7 0.07
    4 2.015 45钢 4.50 3.08 38.1 0.16
    5 锆基金属玻璃 3.135 45钢 4.50 3.00 39.1 0.53
    下载: 导出CSV
  • [1] Fowles G R. Shock wave compression of hardened and annealed 2024 aluminum[J]. Journal of Applied Physics, 1961, 32(8):1475-1487. doi: 10.1063/1.1728382
    [2] Clifton R J, Klopp R W. Pressure-shear plate impact testing[M]//Metals Handbook: Mechanical Testing. OH: American Society for Metals, 1985:230-239.
    [3] Rosenberg Z, Partom Y, Yaziv D. The use of in-material stress gauges for estimating the dynamic yield strength of shock-loaded solids[J]. Journal of Applied Physics, 1984, 56(1):143-146. doi: 10.1063/1.333737
    [4] Asay J R, Chhabildas L C. Determination of the shear strength of shock compressed 6061-T6 aluminum[C]//Meyers M M, Murr L E. Shock Waves and High-strain-rate Phenomena in Metals: Concepts and Application. New York: Plenum Publishing Corp., 1981: 417-431.
    [5] Asay J R, Chhabildas L C, Kerley G I, et al. High pressure strength of shocked aluminum[M]//Gupta Y M. Shock Waves in Condensed Matter. New York: Plenum Press, 1986: 145-149.
    [6] Morris C E, Fritz J N, Holian B L. Quasi-elastic high pressure waves in 2024 Al and copper[C]//Nellis W J. Shock Waves in Condensed Matter. AIP, 1982: 382-386.
    [7] Huang H, AsayJ R. Compressive strength measurements in aluminum for shock compression of the stress range of 4-22 GPa[J]. Journal of Applied Physics, 2005, 98(3):033524. doi: 10.1063/1.2001729
    [8] Huang H, Asay J R.Reshock and release response of aluminum single crystal[J]. Journal of Applied Physics, 2007, 101(6):063550. doi: 10.1063/1.2655571
    [9] 胡建波, 戴诚达, 俞宇颖, 等.双屈服面法测量金属材料动高压屈服强度的若干改进[J].爆炸与冲击, 2006, 26(6):516-521. doi: 10.3321/j.issn:1001-1455.2006.06.007

    Hu Jianbo, Dai Chengdai, Yu Yuying, et al. Some improvements of the self-consistent method for measuring the dynamic yield strength of ductile metals[J]. Explosion and Shock Waves, 2006, 26(6):516-521. doi: 10.3321/j.issn:1001-1455.2006.06.007
    [10] 胡建波, 谭华, 俞宇颖, 等.铝的动态屈服强度测量及再加载弹性前驱波的形成机理分析[J].物理学报, 2008, 57(1):405- 410. doi: 10.3321/j.issn:1000-3290.2008.01.063

    Hu Jianbo, Tan Hua, Yu Yuying, et al. Measurements of dynamic yield strength of aluminum alloy and mechanism analysis of elastic precursor during reloading[J]. Acta Physica Sinica, 2008, 57(1):405- 410. doi: 10.3321/j.issn:1000-3290.2008.01.063
    [11] Chhabildas L C, Hills C R. Dynamic shock studies of vanadium[C]//Murr L E. Metallurgical Applications of Shock-wave and High-strain-rate Phenomena. New York: Marcel Dekker, 1985: 429-448.
    [12] Asay J R, Chhabildas L C, Danderkar D P. Shear strength of shock-loaded polycrystalline tungsten[J]. Journal of Applied Physics, 1980, 51(9):4774-4783. doi: 10.1063/1.328309
    [13] 华劲松.高温高压下钨合金的本构方程研究[D].北京: 中国工程物理研究院北京研究生部, 1999: 1-118.
    [14] 张江跃, 谭华, 虞吉林.双屈服法测定93W合金的屈服强度[J].高压物理学报, 1997, 11(4):254-259. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL704.003.htm

    Zhang Jiangyue, Tan Hua, Yu Jilin. Determination of the yield strength of 93W alloys by using AC techniques[J]. Chinese Journal of High Pressure Physics, 1997, 11(4):254-259. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL704.003.htm
    [15] Chhabildas L C, Barker L M, Asay J R, et al. Relationship of fragment size to normalized spall strength for materials[J]. International Journal of Impact Engineering, 1990, 10(1):107-124. doi: 10.1016-0734-743X(90)90052-W/
    [16] Chhabildas L C, Wise J L, Asay J R. Reshock and release behavior of beryllium[C]//Nellis W J. Shock Waves in Condensed Matter. AIP, 1982: 422-426.
    [17] Duffy T S, Ahrens T J. Dynamic compression of an Fe-Cr-Ni alloy to 80 GPa[J]. Journal of Applied Physics, 1997, 82(9):4259-4269. doi: 10.1063/1.366233
    [18] Furnish M D, Alexander C S, Brown J L, et al. 2169 steel waveform measurements for equation of state and strength determination[J]. Journal of Applied Physics, 2014, 115(3):033511. doi: 10.1063/1.4862277
    [19] Vogler T J, Reinhart W D, Chhabildas L C. Dynamic behavior of boron carbide[J]. Journal of Applied Physics, 2004, 95(8):4173-4183. doi: 10.1063/1.1686902
    [20] Vogler T J, Reinhart W D, Chhabildas L C, et al. Hugoniot and strength behavior of silicon carbide[J]. Journal of Applied Physics, 2006, 99(2):023512. doi: 10.1063/1.2159084
    [21] 俞宇颖, 习锋, 戴诚达, 等.动高压加载下锆基金属玻璃强度测量[J].爆炸与冲击, 2014, 34(1):1-5. doi: 10.3969/j.issn.1001-1455.2014.01.001

    Yu Yuying, Xi Feng, Dai Chengdai, et al. Measurement of strength in a Zr-based bulk metallic glass under dynamic high-pressure loading[J]. Explosion and Shock Waves, 2014, 34(1):1-5. doi: 10.3969/j.issn.1001-1455.2014.01.001
    [22] Yuan F P, Tsai L, Prakash V, et al. Dynamic shear strength of S2 glass fiber reinforced polymer composites under shock compression[J]. Journal of Applied Physics, 2008, 103(10), 103537. doi: 10.1063/1.2930995
    [23] 王翔.金属材料状态方程精密实验测量技术研究[D].北京: 中国工程物理研究院北京研究生部, 2004: 1-94.
    [24] Mitchell A C, Nellis W J. Shock compression of aluminum, copper and tantalum[J]. Journal of Applied Physics, 1981, 52(5):3363-3374. doi: 10.1063/1.329160
    [25] Weng Jidong, Tan Hua, Wang Xiang, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution[J]. Appled Physics Letters, 2006, 89(11):111101. doi: 10.1063/1.2335948
    [26] 俞宇颖, 习锋, 戴诚达, 等.冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为[J].物理学报, 2012, 61(19):382-387. http://d.old.wanfangdata.com.cn/Periodical/wlxb201219056

    Yu Yuying, Xi Feng, Dai Chengda, et al. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading[J]. Acta Physica Sinica, 2012, 61(19):382-387. http://d.old.wanfangdata.com.cn/Periodical/wlxb201219056
    [27] 谭华.实验冲击波物理导引[M].北京:国防工业出版社, 2007:163-167.
    [28] Yu Yuying, Tan Hua, Hu Jianbo, et al. Determination of effective shear modulus of shock-compressed LY12 Al from particle velocity profile measurements[J]. Journal of Applied Physics, 2008, 103(10):103529. doi: 10.1063/1.2927492
    [29] Hu Jianbo, Zhou Xianming, Dai Chengda, et al. Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements[J]. Journal of Applied Physics, 2008, 104(8):083520. doi: 10.1063/1.3003325
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4168
  • HTML全文浏览量:  1266
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-28
  • 修回日期:  2015-05-27
  • 刊出日期:  2016-07-25

目录

    /

    返回文章
    返回