基于SPH方法的聚能射流侵彻混凝土靶板数值模拟

强洪夫 范树佳 陈福振 刘虎

强洪夫, 范树佳, 陈福振, 刘虎. 基于SPH方法的聚能射流侵彻混凝土靶板数值模拟[J]. 爆炸与冲击, 2016, 36(4): 516-524. doi: 10.11883/1001-1455(2016)04-0516-09
引用本文: 强洪夫, 范树佳, 陈福振, 刘虎. 基于SPH方法的聚能射流侵彻混凝土靶板数值模拟[J]. 爆炸与冲击, 2016, 36(4): 516-524. doi: 10.11883/1001-1455(2016)04-0516-09
Qiang Hongfu, Fan Shujia, Chen Fuzhen, Liu Hu. Numerical simulation on penetration of concrete target by shaped charge jet with SPH method[J]. Explosion And Shock Waves, 2016, 36(4): 516-524. doi: 10.11883/1001-1455(2016)04-0516-09
Citation: Qiang Hongfu, Fan Shujia, Chen Fuzhen, Liu Hu. Numerical simulation on penetration of concrete target by shaped charge jet with SPH method[J]. Explosion And Shock Waves, 2016, 36(4): 516-524. doi: 10.11883/1001-1455(2016)04-0516-09

基于SPH方法的聚能射流侵彻混凝土靶板数值模拟

doi: 10.11883/1001-1455(2016)04-0516-09
基金项目: 

国家自然科学基金项目 51276192

国家重点基础研究发展计划(973计划)基金项目 61338

火箭军工程大学创新型基金项目 EPXY0806

详细信息
    作者简介:

    强洪夫(1963—),男,博士,教授,博士生导师

    通讯作者:

    范树佳,fan_shu_jia@163.com

  • 中图分类号: O389

Numerical simulation on penetration of concrete target by shaped charge jet with SPH method

  • 摘要: 在完全变光滑长度SPH(smoothed particle hydrodynamics)方法的基础上,利用F.Ott等提出的修正SPH方法处理在求解多介质大密度问题时的数值不稳定性问题,运用Holmquist-Johnson-Cook本构模型处理混凝土在冲击载荷下的变形和损伤问题,对聚能装药射流侵彻混凝土靶板的过程进行了数值模拟,同时利用LS-DYNA非线性有限元程序进行对比,分析了2种方法得到的混凝土von Mises应力变化、射流头部特定节点处的速度变化及裂纹演变,验证了SPH方法的准确性。分析了另外2种不同尺寸的靶板在射流侵彻作用下的破坏形式,结果符合射流侵彻物理规律,表明该方法适合模拟聚爆炸与冲击等大变形破坏等问题。
  • 图  1  混凝土屈服强度模型曲线

    Figure  1.  Curves for yield strength model of concrete

    图  2  混凝土累计损伤模型曲线

    Figure  2.  Curve for cumulative damage model of concrete

    图  3  混凝土状态方程曲线

    Figure  3.  Curves for equation of state of concrete

    图  4  算例模型结构

    Figure  4.  Construction of the model

    图  5  聚能射流形成过程对比

    Figure  5.  Comparison of the formation of jet flows

    图  6  聚能射流侵彻过程中不同时刻,混凝土靶板中Von Mises应力的分布

    Figure  6.  Von Mises stress distribution in concrete target penetrated by shaped charge jet at different times

    图  7  聚能射流侵彻的混凝土靶

    Figure  7.  Concrete target penetrated by shaped charge jet

    图  8  射流头部特定点处速度-时间曲线

    Figure  8.  Velocity-time curves at special points of jet head

    图  9  在聚能射流的侵彻下不同时刻混凝土靶板的损伤情况

    Figure  9.  Damage in concrete target penetrated by shaped charge jet at different times

    图  10  不同方法模拟得到的裂纹长度及分布情况

    Figure  10.  Length and distribution of crack simulated by different methods

    图  11  另外2种不同尺寸的混凝土靶板在聚能射流侵彻作用下的损伤

    Figure  11.  Damage in other two concrete targets with different sizes penetrated by shaped charge jets

    图  12  另外2种不同尺寸的靶板聚能射流侵彻作用下特定节点的速度-时间曲线

    Figure  12.  Velocity-time curves at special points of other two concrete targets with different sizes penetrated by shaped charge jets

  • [1] 段建, 杨黔龙, 周刚, 等.串联随进战斗部侵彻混凝土靶实验研究[J].爆炸与冲击, 2007, 27(4):364-369. doi: 10.3321/j.issn:1001-1455.2007.04.012

    Duan Jian, Yang Qianlong, Zhou Gang, et al. Experimental studies of a tandem follow-through warhead penetrating concrete target[J]. Explosion and Shock Waves, 2007, 27(4):364-369. doi: 10.3321/j.issn:1001-1455.2007.04.012
    [2] Swegle J W, Attaway S W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[J]. Computational Mechanics, 1995, 17(3):151-168. doi: 10.1007-BF00364078/
    [3] Libersky L D, Petscheck A G. Smoothed particle hydrodynamics with strength of materials[C]//Trease H, Fritts J, Crowley W. Proceedings of the Next Free Lagrange Conference. NY: SpringerVerlag, 1991, 395: 248-257.
    [4] Libersky L D, Petscheck A G, Carney T C, et al. High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response[J]. Journal of Computational Physics, 1993, 109(1):67-75. http://cn.bing.com/academic/profile?id=f5b87b9c4f2fcce90394ac322bb29f60&encoded=0&v=paper_preview&mkt=zh-cn
    [5] Liu M B, Liu G R, Zong Z, et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology[J]. Computers & Fluids, 2003, 32(3):305-322. http://cn.bing.com/academic/profile?id=78358a2b72043bd2db9a95d83b7df716&encoded=0&v=paper_preview&mkt=zh-cn
    [6] Liu M B, Liu G R, Lam K Y, et al. Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations[J]. Shock Waves, 2003, 12(6):509-520. doi: 10.1007/s00193-003-0185-2
    [7] Qiang Hongfu, Wang Kunpeng, Gao Weiran. Numerical simulation of shaped charge jet using multi-phase SPH method[J]. Transactions of Tianjin University, 2008, 14(1):495-499. http://cn.bing.com/academic/profile?id=2700e225ea1da83de80808d57d0ac670&encoded=0&v=paper_preview&mkt=zh-cn
    [8] Ott F, Schnetter E. A modified SPH approach for fluids with large density differences[J]. Arxiv Physics E-prints, 2003:3112. doi: 10.1002-zaac.201100286/
    [9] 强洪夫, 高巍然.完全变光滑长度SPH法及其实现[J].计算物理, 2008, 25(5):569-575. doi: 10.3969/j.issn.1001-246X.2008.05.008

    Qiang Hongfu, Gao Weiran. SPH method with fully variable smoothing lengths and implementation[J]. Chinese Journal of Computational Physics, 2008, 25(5):569-575. doi: 10.3969/j.issn.1001-246X.2008.05.008
    [10] 强洪夫, 王坤鹏, 高巍然.基于完全变光滑长度SPH方法的HE爆轰过程的数值试验[J].含能材料, 2009, 17(1):27-31. doi: 10.3969/j.issn.1006-9941.2009.01.008

    Qiang Hongfu, Wang Kunpeng, Gao Weiran. Numerical study of high explosive detonation process using SPH method with fully variable smoothing lengths[J]. Chinese Journal of Energetic Materials, 2009, 17(1):27-31. doi: 10.3969/j.issn.1006-9941.2009.01.008
    [11] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. Hague, Netherlands, 1983: 571-574.
    [12] Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high strain rate[J]. Journal of Applied Physics, 1980, 51(3):1498-1504. doi: 10.1063/1.327799
    [13] Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//Proceedings of the 14th International Symposium on Ballistics. Quebec, Canada, 1993: 591-600.
    [14] Monaghan J J. Smoothed particle hydrodynamics[J]. Reports on Progress in Physics, 2005, 68(8):1703-1759. doi: 10.1088/0034-4885/68/8/R01
    [15] Liu G R, Liu M B.光滑粒子流体动力学: 一种无网格粒子法[M].韩旭, 杨刚, 强洪夫, 译.长沙: 湖南大学出版社, 2005: 195-197.
    [16] Livermore Software Technology Corporation. LS-DYNA keyword user's manual[M]. Livermore: Livermore Software Technology Corporation, 2012:17-45.
    [17] Liu M B, Liu G R, Zong Z, et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology[J]. Computers and Fluids, 2003, 32(3):305-322. http://cn.bing.com/academic/profile?id=78358a2b72043bd2db9a95d83b7df716&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(12)
计量
  • 文章访问数:  6640
  • HTML全文浏览量:  2501
  • PDF下载量:  740
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-03
  • 修回日期:  2015-03-24
  • 刊出日期:  2016-07-25

目录

    /

    返回文章
    返回