多孔发射药等离子体增强燃速

倪琰杰 邢荣军 弯港 金涌 李海元 杨春霞 栗保明

倪琰杰, 邢荣军, 弯港, 金涌, 李海元, 杨春霞, 栗保明. 多孔发射药等离子体增强燃速[J]. 爆炸与冲击, 2016, 36(4): 562-567. doi: 10.11883/1001-1455(2016)04-0562-06
引用本文: 倪琰杰, 邢荣军, 弯港, 金涌, 李海元, 杨春霞, 栗保明. 多孔发射药等离子体增强燃速[J]. 爆炸与冲击, 2016, 36(4): 562-567. doi: 10.11883/1001-1455(2016)04-0562-06
Ni Yanjie, Xing Rongjun, Wan Gang, Jin Yong, Li Haiyuan, Yang Chunxia, Li Baoming. Porous propellant burning rate enhanced by plasma[J]. Explosion And Shock Waves, 2016, 36(4): 562-567. doi: 10.11883/1001-1455(2016)04-0562-06
Citation: Ni Yanjie, Xing Rongjun, Wan Gang, Jin Yong, Li Haiyuan, Yang Chunxia, Li Baoming. Porous propellant burning rate enhanced by plasma[J]. Explosion And Shock Waves, 2016, 36(4): 562-567. doi: 10.11883/1001-1455(2016)04-0562-06

多孔发射药等离子体增强燃速

doi: 10.11883/1001-1455(2016)04-0562-06
详细信息
    作者简介:

    倪琰杰(1990—),男,博士研究生

    通讯作者:

    杨春霞,yangcx@njust.edu.cn

  • 中图分类号: O381

Porous propellant burning rate enhanced by plasma

  • 摘要: 利用密闭爆发器实验系统进行了等离子体增强4/7高固体发射药燃速特性的实验研究。采用等离子体发生器的电能利用效率来表征密闭爆发器内输入的等离子体能量,拟合了考虑压力梯度影响和电功率增强的固体发射药瞬态燃速公式。根据实验数据得到4/7高固体发射药的电功率燃速增强因子为0.005 MW-1。与Woodley燃速公式相比,瞬态燃速公式与实验压力曲线符合程度更高,能够更精确地描述固体发射药在等离子体作用下的燃烧过程。
  • 图  1  等离子体点火密闭爆发器实验装置结构示意图

    Figure  1.  Experimental setup of closed bomb with plasma igniter

    图  2  实验测得压力随时间变化曲线

    Figure  2.  Experimental pressure-time curves

    图  3  实验测得压力梯度随时间变化曲线

    Figure  3.  Experimental pressure gradient-time curves

    图  4  常规点火时实验与数值模拟压力曲线

    Figure  4.  Experimental and simulated pressure-time curvesafter conventional ignition

    图  5  第3发实验的压力与输入电功率曲线

    Figure  5.  Pressure-time and electric power-time curves for test 3

    图  6  第4发实验的压力与输入电功率曲线

    Figure  6.  Pressure-time and electric power-time curves for test 4

    图  7  第5发实验的压力与输入电功率曲线

    Figure  7.  Pressure-time and electric power-time curves for test 5

    表  1  实验参数和结果

    Table  1.   Experimental parameters and results

    编号 点火方式 Uc/kV tig/ms tend/ms pm/MPa
    实验1 2号电点火 1.604 5.05 298
    实验2 2号电点火 1.673 4.95 300
    实验3 等离子体点火 8.3 0.261 2.93 318
    实验4 等离子体点火 10.0 0.197 2.44 319
    实验5 等离子体点火 10.1 0.167 2.16 329
    下载: 导出CSV

    表  2  模拟压力曲线与实验压力曲线间的均方误差

    Table  2.   Mean squared errors between simulated pressure curves and test ones

    编号 σ/MPa
    Woodley燃速公式 瞬态燃速公式
    实验3 4.325 4.294
    实验4 9.312 4.910
    实验5 13.506 5.715
    下载: 导出CSV
  • [1] Goldenberg C, Zoler D, Shafir N, et al. Plasma-propellant interaction at low plasma energies in ETC guns[J]. IEEE Transactions on Magnetics, 2003, 39(1):227-230. doi: 10.1109/TMAG.2002.805945
    [2] Kaste P, Birk A, Kinkennon A, et al. Analysis of burning rate phenomena and extinguished solid propellants from an interrupted closed bomb with plasma igniter[J]. IEEE Transactions on Magnetics, 2001, 37(1):173-177. doi: 10.1109/20.911815
    [3] Beyer R A, Brant A L. Plasma ignition in a 30-mm cannon[J]. IEEE Transactions on Magnetics, 2007, 43(1):294-298. doi: 10.1109/TMAG.2006.887689
    [4] Zoler D, Shafir N, Forte D, et al. Study of plasma jet capabilities to produce uniform ignition of propellants, ballistic gain, and significant decrease of the temperature gradient[J]. IEEE Transactions on Magnetics, 2007, 43(1):322-328. doi: 10.1109/TMAG.2006.887664
    [5] Alimi R, Bakshi L, Kot E, et al. Temperature compensation and improved ballistic performance in a solid-propellant electrothermal-chemical(SPETC) 40-mm gun[J]. IEEE Transactions on Magnetics, 2007, 43(1):289-293. doi: 10.1109/TMAG.2006.887688
    [6] Beckstead M W. Recent progress in modeling solid propellant combustion[J]. Combustion, Explosion, and Shock Waves, 2006, 42(6):623-641. doi: 10.1007/s10573-006-0096-5
    [7] Beckstead M W, Puduppakkam K, Thakre P, et al. Modeling of combustion and ignition of solid-propellant ingredients[J]. Progress in Energy and Combustion Science, 2007, 33(6):497-551. doi: 10.1016/j.pecs.2007.02.003
    [8] Woodley C R, Billett S J. Modeling enhanced gas generation rates in a 155 mm ETC gun[J]. IEEE Transactions on Magnetics, 2001, 37(1):207-210. doi: 10.1109/20.911822
    [9] Woodley C R. Comparison of 0D and 1D interior ballistics modeling of high performance direct fire guns[C]//Crewther I R. Proceedings of 19th International Symposium of Ballistics. Switzerland: International Ballistics Committe, 2001: 57-64.
    [10] Taylor M J, Woodley C R. Variation in enhanced gas generation rates in electrothermal-chemical closed chamber studies[C]//Crewther I R. Proceedings of 19th International Symposium of Ballistics. Switzerland: International Ballistics Committe, 2001: 179-186.
    [11] 李海元, 栗保明, 李鸿志, 等.等离子体点火密闭爆发器中火药燃速特性的研究[J].爆炸与冲击, 2004, 24(2):145-150. doi: 10.3321/j.issn:1001-1455.2004.02.008

    Li Haiyuan, Li Baoming, Li Hongzhi, et al. Propellant burn rate characteristics in closed bomb ignited with plasma[J]. Explosion and Shock Waves, 2004, 24(2):145-150. doi: 10.3321/j.issn:1001-1455.2004.02.008
    [12] 李海元, 栗保明, 李鸿志.等离子体点火条件下火药燃速的实验研究[J].弹道学报, 2007, 19(2):78-81. doi: 10.3969/j.issn.1004-499X.2007.02.021

    Li Haiyuan, Li Baoming, Li Hongzhi. Experimental study on propellant burning rate under the conditions of plasma ignition[J]. Journal of Ballistics, 2007, 19(2):78-81. doi: 10.3969/j.issn.1004-499X.2007.02.021
    [13] Brik A, Guercio M D, Kinkennon A, et al. Interrupted-burning tests of plasma-ignited JA2 and M30 grains in a closed chamber[J]. Propellants, Explosives, Pyrotechnics, 2000, 25(3):133-142. doi: 10.1002/(ISSN)1521-4087
    [14] 翁春生, 王浩.计算内弹道学[M].北京:国防工业出版社, 2006:7-15.
    [15] Krier H. Solid propellant burning rate during a pressure transient[J]. Combustion Science and Technology, 1972, 5(2):69-73 doi: 10.1080/00102207208952505
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  4011
  • HTML全文浏览量:  1264
  • PDF下载量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-01
  • 修回日期:  2015-01-29
  • 刊出日期:  2016-07-25

目录

    /

    返回文章
    返回