冲击起爆弹丸内装药延迟起爆数值模拟

章猛华 王鹏新 余永刚 阮文俊 王健 宁惠君

章猛华, 王鹏新, 余永刚, 阮文俊, 王健, 宁惠君. 冲击起爆弹丸内装药延迟起爆数值模拟[J]. 爆炸与冲击, 2016, 36(5): 728-733. doi: 10.11883/1001-1455(2016)05-0728-06
引用本文: 章猛华, 王鹏新, 余永刚, 阮文俊, 王健, 宁惠君. 冲击起爆弹丸内装药延迟起爆数值模拟[J]. 爆炸与冲击, 2016, 36(5): 728-733. doi: 10.11883/1001-1455(2016)05-0728-06
Zhang Menghua, Wang Pengxin, Yu Yonggang, Ruan Wenjun, Wang Jian, Ning Huijun. Numerical simulation of the delay time of impact initiated projectile[J]. Explosion And Shock Waves, 2016, 36(5): 728-733. doi: 10.11883/1001-1455(2016)05-0728-06
Citation: Zhang Menghua, Wang Pengxin, Yu Yonggang, Ruan Wenjun, Wang Jian, Ning Huijun. Numerical simulation of the delay time of impact initiated projectile[J]. Explosion And Shock Waves, 2016, 36(5): 728-733. doi: 10.11883/1001-1455(2016)05-0728-06

冲击起爆弹丸内装药延迟起爆数值模拟

doi: 10.11883/1001-1455(2016)05-0728-06
基金项目: 国防预研究基金项目
详细信息
    作者简介:

    章猛华(1990—),男,博士研究生, zmhalt@163.com

  • 中图分类号: O383

Numerical simulation of the delay time of impact initiated projectile

  • 摘要: 对穿爆燃弹的穿靶及释能过程进行数值模拟,解释了SPH-FEM耦合方法在模拟冲击起爆过程的优越性。通过对不同弹芯头部形状、直径及材料的对比分析,得到了不同工况下装药热点成长的压力-时间曲线,计算结果表明:在弹芯直径不变的情况下,弹芯头部直角尖刺越短,装药的热点成长时间越短;在头部尖刺长度不变的情况下,减小弹芯直径,热点生成时间也缩短;选用钢弹芯比钨合金弹芯有一定靶后释能优势。模拟穿靶效果与真实穿靶效果符合较好,这种方法可以为穿爆类弹丸设计提供依据。
  • 图  1  穿爆燃弹结构

    Figure  1.  Bored armour-piercing explosive incendiary cartridge structure

    图  2  子弹数值模拟模型

    Figure  2.  Bullet simulation model

    图  3  SPH-FEM耦合靶板模型

    Figure  3.  SPH-FEM coupling target model

    图  4  热点成长时间与粒子直径的关系

    Figure  4.  Relationship of hot point growth time with particle diameters

    图  5  不同结构弹芯

    Figure  5.  Bullet cores with different structures

    图  6  热点压力成长曲线

    Figure  6.  Curves for hot point pressure growth

    图  7  不同释能时机的穿靶效果图

    Figure  7.  Effect of energy release time on target penetration

    图  8  弹芯过载曲线

    Figure  8.  Curves for bullet core overload

    图  9  热点压力成长曲线

    Figure  9.  Curves for hot-point pressure growth

    图  10  热点生成位置时刻图

    Figure  10.  Hot-point generated positions and moments

    图  11  子弹穿靶效果

    Figure  11.  Bullet's target penetration effect

    图  12  破片飞散效果

    Figure  12.  Fragments' flying effect

    表  1  PETN和Comp B材料参数

    Table  1.   Material parameters of PETN and Comp B

    炸药 材料参数 产物参数 未反应物参数
    I/μs-1 b a x G1 c d y G2 e g z ω A/GPa B/GPa R1 R2 ω A/GPa B/GPa R1 R2
    PETN 20 0.222 0 4 0 0 0 0 400 0.222 0.667 1.4 0.25 589.2 16.92 4.4 1.2 1.173 3 746 -131.3 7.2 3.6
    Comp B 44 0.222 0.01 4.0 414 0.222 0.667 2.0 0 0 0 0 0.34 524.2 7.67 4.2 1.1 0.893 77 810 -5.031 11.3 1.13
    下载: 导出CSV
  • [1] 张德良, 罗忠文, 俞善炳, 等.穿爆弹撞靶效应数值分析[J].兵工学报, 1997, 18(2):102-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700179225

    Zhang Deliang, Luo Zhongwen, Yu Shanbin, et al. Numerical analyses of the effects of impact of a penetrating projectile on the target[J]. Acta Armamentarii, 1997, 18(2):102-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700179225
    [2] 纪冲, 龙源, 方向.基于FEM-SPH耦合法的弹丸侵彻钢纤维混凝土数值模拟[J].振动与冲击, 2010, 29(7):69-74. doi: 10.3969/j.issn.1000-3835.2010.07.015

    Ji Chong, Long Yuan, Fang Xiang. Numerical simulation for projectile penetrating steel fiber reinforced concrete with FEM-SPH coupling algorithm[J]. Journal of Vibration and Shock, 2010, 29(7):69-74. doi: 10.3969/j.issn.1000-3835.2010.07.015
    [3] Century Dynamics Inc. Interactive non-linear dynamic analysis software AUTODYNTM user manual. Revision 3.0[CP]. USA: Century Dynamics Inc, 1997.
    [4] 乐莉, 闫军, 钟秋海.超高速撞击仿真算法分析[J].系统仿真学报, 2004, 16(9):1941-1943. doi: 10.3969/j.issn.1004-731X.2004.09.025

    Yue Li, Yan Jun, Zhong Qiuhai. Simulations of debris impacts using three different algorithms[J]. Journal of System Simulation, 2004, 16(9):1941-1943. doi: 10.3969/j.issn.1004-731X.2004.09.025
    [5] 王吉, 王肖钧, 卞梁.光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用[J].爆炸与冲击, 2007, 27(6):522-528. doi: 10.3321/j.issn:1001-1455.2007.06.007

    Wang Ji, Wang Xiaojun, Bian Liang. Linking of smoothed particle hydrodynamics method to standard finite element method and its application in impact dynamics[J]. Explosion and Shock Waves, 2007, 27(6):522-528. doi: 10.3321/j.issn:1001-1455.2007.06.007
    [6] Attaway S W, Heinstein M W, Swegle J W. Coupling of Smooth particle hydrodynamic with finite element method[J]. Nuclear Engineering and Design, 1994, 150(2/3):199-205. doi: 10.1016-0029-5493(94)90136-8/
    [7] De Vuyst T, Vignjevic R, Campbell J C. Coupling between meshless and finite element methods[J]. International Journal of Impact Engineering, 2005, 31(8):1054-1064. doi: 10.1016/j.ijimpeng.2004.04.017
    [8] Xiao Y H, Han X, Hu D A. A coupling algorithm of finite element method and smoothed particle hydrodynamics for impact computations[J]. Computers, Materials & Continua, 2011, 23(1):9-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a07c4b8549c5a92ea69f8ba69e561219
    [9] 肖毅华, 胡德安, 韩旭, 等.一种自适应轴对称FEM-SPH耦合算法及其在高速冲击模拟中的应用[J].爆炸与冲击, 2012, 32(4):384-392. doi: 10.3969/j.issn.1001-1455.2012.04.007

    Xiao Yihua, Hu Dean, Han Xu, et al. An adaptive axisymmetric FEM-SPH coupling algorithm and its application to high velocity impact simulation[J]. Explosive and Shock Waves, 2012, 32(4):384-392. doi: 10.3969/j.issn.1001-1455.2012.04.007
    [10] 宋太阳.冲击起爆弹丸对薄板侵彻过程研究[J].弹道学报, 1999, 11(4):54-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DDXB199904012.htm

    Song Taiyang. Theinvestigation on penetration process of projectile initiated by impact onto thin-sheet[J]. Journal of Ballistics, 1999, 11(4):54-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DDXB199904012.htm
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  4650
  • HTML全文浏览量:  1320
  • PDF下载量:  513
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-20
  • 修回日期:  2015-05-11
  • 刊出日期:  2016-09-25

目录

    /

    返回文章
    返回