Experiments and dimensional analysis ofhigh-speed projectile penetration efficiency
-
摘要: 为了研究高速侵彻时弹体撞击速度、材料强度等对质量侵蚀特性和侵彻效率的影响规律,开展了不同材料强度和长径比的弹体高速侵彻半无限厚素混凝土靶实验,弹体撞击速度为880~1 900 m/s,弹头形状为尖卵型(半径口径比为3),口径为30 mm。由实验发现:弹体撞击速度对侵彻效率的影响呈抛物线分布,最大侵彻效率时的弹体特征撞击速度约1 400 m/s;高速侵彻时弹体的质量侵蚀主要发生在卵形头部,弹身及尾部损伤极少;速度超过特征撞击速度时,弹体侵蚀严重,甚至弯曲变形或解体;弹体强度提高至约2倍时,质量侵蚀率降低约80%。基于实验,利用量纲分析原则建立了量纲一侵彻效率和量纲一弹体撞击速度的函数关系式,可估算出最大侵彻效率对应的弹体撞靶速度,为高速侵彻效应模拟实验提供理论指导。Abstract: This paper carried out high-speed penetration experiments using semi-infinite plain concrete targets with different projectile materials and aspect ratios to investigate the effects of striking velocity and material strength on projectile loss and penetration efficiency. Characterized with caliber-radius-head (CRH) 3.0 and 30-mm diameter, the ogive-nose projectiles were launched at high-speed striking velocities between 880-1 900 m/s to impact the concrete target. The measured experiment data indicates that the penetration efficiency is in parabolic relation with the striking velocity, i.e. the maximum penetration efficiency corresponds to an impact velocity of about 1 400 m/s. The main abrasion occurs around the projectile nose while only negligible erosion is observed at the projectile shank and end cap. When the speed exceeds the characteristic impact velocity, the projectile's mass loss is so serious that even bending deformation or disintegration occurs. When the projectile strength is nearly doubled, the mass loss is reduced by about 80%. Based on the experimental data, the relationship function of dimensionless penetration efficiency and impact velocity was achieved using dimensional analysis. The dimensionless model obtained in this paper is capable of predicting the corresponding impact speed for the maximum penetration efficiency, thereby providing theoretical guidance for high-speed simulated penetration experiments.
-
表 1 实验前弹体参数
Table 1. Parameters of projectiles before experiments
弹体 m0/g l0/mm d0/mm σp/MPa μ 33-01 285.8 89.76 29.91 856 3 33-02 287.1 90.06 29.87 856 3 33-03 286.5 90.02 29.88 856 3 33-04 287.3 90.10 29.93 856 3 5-01 322.6 90.23 30.00 1 650 3 5-02 322.0 90.02 29.98 1 650 3 5-03 323.4 90.13 29.97 1 650 3 5-04 322.8 90.01 29.88 1 650 3 5-05 322.2 90.02 29.98 1 650 3 6-01 313.1 107.39 26.91 1 650 4 6-02 318.1 107.88 26.95 1 650 4 6-03 315.8 107.05 26.82 1 650 4 表 2 实验后弹靶参数
Table 2. Parameters of projectiles and targets after experiments
弹体 v0/(m·s-1) α/(°) β/(°) (Δl/l0)/% (Δm/m0)/% d/mm γ/(°) H/mm 33-01 924.0 0.55 -3.13 6.20 2.80 29.94 15.0(向右) 247.85 33-02 1 087.9 0.59 1.64 13.60 5.05 30.19 6.5(向上) 321.19 33-03 1 174.8 - - - - - - 230.00 33-04 1 320.0 - - - - - - 170.00 5-01 885.3 1.00 1.00 1.36 1.77 29.92 5.0(向左) 310.00 5-02 1 385.0 6.00 2.00 3.35 2.82 29.78 23.7(向上) 775.00 5-03 1 286.3 0 1.30 1.93 3.12 29.91 6.3(向下)30.0(向左) 630.00 5-04 1 595.6 0 -1.59 14.74 7.00 29.89 14.4(向上) 780.00 5-05 1 851.7 0 5.79 22.76 13.38 29.91 5.5(向下)8.4(向左) 639.53 6-01 1 303.3 0 7.59 2.08 3.80 26.93 21.1(向上) 747.00 6-02 1 580.6 0 3.59 40.96 37.06 26.89 4.4(向下)7.1(向右) 508.69 6-03 1 872.3 0 21.56 - - - - 340.00 表 3 侵彻实验数据
Table 3. Penetration experiment data
v0/(m·s-1) H/mm η/μs v0√f′c/ρt ηd0√ρt/f′c 885.3 310.00 350.164 6.661 41 1.551 22 1 286.3 630.00 489.777 9.678 73 2.169 70 1 385.0 775.00 559.567 10.421 39 2.478 88 1 595.6 780.00 488.847 12.005 97 2.165 59 1 851.7 639.53 345.382 13.932 76 1.530 04 -
[1] 宋梅利, 王晓鸣, 赵希芳, 等.弹体高速侵彻混凝土靶侵彻效率影响因素分析[J].南京理工大学学报, 2014, 38(3):390-395. doi: 10.3969/j.issn.1005-9830.2014.03.015Song Meili, Wang Xiaoming, Zhao Xifang, et al. Influencing factors of penetration efficiency for projectiles' high-speed penetration into concrete targets[J]. Journal of Nanjing University of Science and Technology, 2014, 38(3):390-395. doi: 10.3969/j.issn.1005-9830.2014.03.015 [2] Nelson R W. Low-yield earth-penetrating nuclear weapons[J]. Science and Global Security, 2002, 10(1):1-20. doi: 10.1080/08929880212326 [3] Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5):465-476. doi: 10.1016/0734-743X(95)00048-F [4] Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4):395-405. doi: 10.1016/0734-743X(94)80024-4 [5] Davis R N, Neely A M, Jones S E. Mass loss and blunting during high-speed penetration[J]. Proceedings of the Institution of Mechanical Engineers: Part C, 2004, 218(9):1053-1062. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC029838652/ [6] Mu Z C, Zhang W. An investigation on mass loss of ogival projectiles penetrating concrete targets[J]. Intrnational Journal of Impact Engineering, 2011, 38(8):770-778. http://cn.bing.com/academic/profile?id=2c0e4470dc82018a49a6e87b001d31b2&encoded=0&v=paper_preview&mkt=zh-cn [7] Chen X W, Li Q M. Transition from non-deformable projectile penetration to semi-hydrodynamic penetration[J]. Journal of Engineering Mechanics, 2004, 130(1):123-127. doi: 10.1061/(ASCE)0733-9399(2004)130:1(123) [8] 谢多夫.力学中的相似方法与量纲理论[M].沈青, 倪锄非, 李维新, 译.北京: 科学出版社, 1982. [9] Chen X W, He L L, Yang S Q. Modeling on mass abrasion of kinetic energy penetrator[J]. European Journal of Mechanics A: Solids, 2010, 29(1):7-17. doi: 10.1016/j.euromechsol.2009.07.006 期刊类型引用(14)
1. 康雨嫣,郭瑞奇,董凯,董杰,欧灿. C15素混凝土和花岗岩对弹体的偏转效应研究. 湘潭大学学报(自然科学版). 2025(02): 121-132 . 百度学术
2. 刘蒙莎,高戈,蒋迪. 预应力钢筋混凝土结构抗侵彻性能试验及数值模拟研究. 原子能科学技术. 2024(S1): 75-86 . 百度学术
3. 侯旭华,印立魁,曲乾坤,梁家栋,兰宇鹏,王君凤,杨芮,陈智刚. 宽速域条件下卵形弹侵彻规律研究. 弹箭与制导学报. 2024(04): 62-71 . 百度学术
4. 李萌,武海军,董恒,任光,张鹏,黄风雷. 基于机器学习的混凝土侵彻深度预测模型. 兵工学报. 2023(12): 3771-3782 . 百度学术
5. 姚志彦,李金柱,齐凯丽,徐杨,黄风雷. 长杆弹超高速侵彻砂浆靶临界速度的实验和计算. 兵工学报. 2022(07): 1578-1588 . 百度学术
6. 刘拓,兰宝刚,李广武,李超. 主动引射高空模拟试车台试验舱舱压数值研究. 固体火箭技术. 2021(03): 409-413 . 百度学术
7. 赵汝东,史宪铭,苏小波,王谦,姜广胜. 基于Bayesian体系融合的新型弹药消耗预计方法. 兵器装备工程学报. 2020(02): 75-80 . 百度学术
8. 周志强,段士伟. 平头长杆弹侵彻有限厚度靶剩余弹速的相似律分析. 海峡科技与产业. 2020(02): 65-67 . 百度学术
9. 陈卓,孙惠香,袁英杰,曹洪瑞,牛欢,王英武. 射弹对钢纤维混凝土侵彻深度的计算. 武汉大学学报(工学版). 2020(11): 980-985 . 百度学术
10. 戴湘晖,周刚,沈子楷,李鹏杰,初哲,王可慧,段建,胡玉涛,杨慧. 高速弹体对钢筋混凝土靶的侵彻/贯穿效应实验研究. 高压物理学报. 2019(05): 138-146 . 百度学术
11. 张国星,强洪夫,陈福振,石超. 钻地弹侵彻地下工事问题的研究与发展. 飞航导弹. 2018(06): 34-38 . 百度学术
12. 郭策安,周峰,赵爽,石小山,石阔,张健. 预控破片战斗部成型及速度衰减的影响研究. 沈阳理工大学学报. 2018(02): 56-62 . 百度学术
13. 段士伟,李平. 基于Tate简化侵彻模型的率相关相似律研究. 弹箭与制导学报. 2017(04): 60-62+67 . 百度学术
14. 刘绍鎏,孙惠香,张悦,黄文文,冯拓. 相似理论与量纲分析法相结合的钻地弹侵彻岩体经验公式. 空军工程大学学报(自然科学版). 2017(03): 99-103 . 百度学术
其他类型引用(4)
-