障碍物对预混火焰特性影响的大涡数值模拟

王公忠 张建华 李登科 陈先锋

王公忠, 张建华, 李登科, 陈先锋. 障碍物对预混火焰特性影响的大涡数值模拟[J]. 爆炸与冲击, 2017, 37(1): 68-76. doi: 10.11883/1001-1455(2017)01-0068-09
引用本文: 王公忠, 张建华, 李登科, 陈先锋. 障碍物对预混火焰特性影响的大涡数值模拟[J]. 爆炸与冲击, 2017, 37(1): 68-76. doi: 10.11883/1001-1455(2017)01-0068-09
Wang Gongzhong, Zhang Jianhua, Li Dengke, Chen Xianfeng. Large eddy simulation of impacted obstacles' effects on premixed flame's characteristics[J]. Explosion And Shock Waves, 2017, 37(1): 68-76. doi: 10.11883/1001-1455(2017)01-0068-09
Citation: Wang Gongzhong, Zhang Jianhua, Li Dengke, Chen Xianfeng. Large eddy simulation of impacted obstacles' effects on premixed flame's characteristics[J]. Explosion And Shock Waves, 2017, 37(1): 68-76. doi: 10.11883/1001-1455(2017)01-0068-09

障碍物对预混火焰特性影响的大涡数值模拟

doi: 10.11883/1001-1455(2017)01-0068-09
基金项目: 

国家自然科学基金项目 51174153

国家自然科学基金项目 51374164

国家重点研发计划项目 2016YFC0802801

建筑消防工程技术公安部重点实验室开放课题项目 KFKT2014ZD03

详细信息
    通讯作者:

    陈先锋,cxf618@whut.edu.cn

  • 中图分类号: O383

Large eddy simulation of impacted obstacles' effects on premixed flame's characteristics

  • 摘要: 障碍物在预混气体火焰传播过程中对其结构及传播特性造成较大影响,对火焰的加速和爆燃转爆轰过程(deflagration-to-detonation transition, DDT)起到直接的促进作用。通过障碍物条件下可视管道中甲烷/空气预混火焰传播实验,捕获其火焰微观结构变化。采用三维物理模型,采用壁面自适应局部涡黏模型(wall-adapting local eddy-viscosity, WALE)的大涡模拟(large eddy simulation, LES),并用火焰增厚化学反应模型(thickened flame model, TFM)对实验过程进行重现。分析开口管道中预混火焰翻越障碍物后的复杂流场变化,并分析层流向湍流转变过程的特点。揭示了在障碍物影响下预混火焰扰动失稳现象的直接原因,是由障碍物引发的3个气流涡团同时作用而形成Kelvin-Helmholtz不稳定及Rayleigh-Taylor不稳定现象耦合作用所导致。
  • 图  1  管道中心轴切面结构图

    Figure  1.  Pipe axis structure in cross-section

    图  2  甲烷/空气预混火焰传播过程纹影图片

    Figure  2.  High-speed schlieren images of premixed methane/air flame propagation

    图  3  LES模型计算三维预混火焰结构时间序列图

    Figure  3.  Sequence diagram three-dimensional premixed flame structure by LES model

    图  4  火焰翻越障碍物时管道内流场结构示意图

    Figure  4.  The pipe flow field structure diagram when the flame climb over the obstacle

    图  5  特征点处压力时程曲线实验与LES模型计算值对比

    Figure  5.  Comparison of pressure histories at characteristic point between experiment and LES

    图  6  预混火焰翻越障碍物过程中管道内的速度矢量及流场变化图

    Figure  6.  Velocity vector and the flow field when premixed flame climbed over obstacle

    图  7  预混火焰法向截面的温度云图及流场结构

    Figure  7.  Temperature contours and the flow field structure of premixed flame normal section

  • [1] Ciccarelli G, Johansen C, Kellenberger M.High-speed flames and DDT in very rough-walled channels[J].Combustion and Flame, 2013, 160(1):204-211. doi: 10.1016/j.combustflame.2012.08.009
    [2] Chen Xianfeng, Zhang Yin, Zhang Ying.Effect of CH4-Air ratios on gas explosion flame microstructure and propagation behaviors[J].Energies, 2012, 5(10):4132-4146. doi: 10.3390/en5104132
    [3] Sklavounos S, Rigas F.Validation of turbulence models in heavy gas dispersion over obstacles[J].Journal of hazardous materials, 2004, 108(1):9-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c7b9ce98b1236bf2e9888f9b42111d6
    [4] Arntzen B J.Modelling of turbulence and combustion for simulation of gas explosions in complex geometries[J].Journal of Loss Prevention in the Process Industries, 1998, 18(4/5/6):225-237. http://cn.bing.com/academic/profile?id=bd294e5486d8a62e3f3850d02e580e62&encoded=0&v=paper_preview&mkt=zh-cn
    [5] Sarli V D, Benedetto A D, Long E J, et al.Time-resolved particle image velocimetry of dynamic interactions between hydrogen-enriched methane/air premixed flames and toroidal vortex structures[J].International Journal of Hydrogen Energy, 2012, 37(21):16201-16213. doi: 10.1016/j.ijhydene.2012.08.061
    [6] Masri A R, Ibrahim S S, Cadwallader B J.Measurements and large eddy simulation of propagating premixed flames[J].Experimental Thermal and Fluid Science, 2006, 30(7):687-702. doi: 10.1016/j.expthermflusci.2006.01.008
    [7] Gubba S R, Ibrahim S S, Malalasekera W, et al.Measurements and LES calculations of turbulent premixed flame propagation past repeated obstacles[J].Combustion and Flame, 2011, 158(12):2465-2481. doi: 10.1016/j.combustflame.2011.05.008
    [8] Kessler D A, Gamezo V N, Oran E S.Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems[J].Combustion and Flame, 2010, 157(11):2063-2077. doi: 10.1016/j.combustflame.2010.04.011
    [9] Gamezo V N, Ogawa T, Oran E S.Flame acceleration and DDT in channels with obstacles:Effect of obstacle spacing[J].Combustion and Flame, 2008, 155(1/2):302-315. http://www.sciencedirect.com/science/article/pii/S0010218008001934
    [10] Ogawa T, Gamezo V N, Oran E S.Flame acceleration and transition to detonation in an array of square obstacles[J].Journal of Loss Prevention in the Process Industries, 2013, 26(2):355-362. doi: 10.1016/j.jlp.2011.12.009
    [11] 任少峰.可燃性气体泄爆动力学机理研究[D].武汉: 武汉理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10497-1012442364.htm
    [12] Lesieur M.Large-eddy simulations of turbulence[M].Cambridge:Cambridge University Press, 2005.
    [13] 肖华华.管道中氢/空气预混火焰传播动力学实验与数值模拟研究[D].合肥: 中国科学技术大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2354259
  • 加载中
图(7)
计量
  • 文章访问数:  4781
  • HTML全文浏览量:  1727
  • PDF下载量:  426
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-12
  • 修回日期:  2015-11-18
  • 刊出日期:  2017-01-25

目录

    /

    返回文章
    返回