High order spectral volume method for multi-component flows
-
摘要: 针对高维及多物理耦合计算耗费大等困难,设计适合多介质流动模拟的模板紧致、易于并行、高阶精度、计算耗费小的谱体积方法。该方法是求解双曲型守恒率谱体积方法的直接推广,针对多介质流动物质界面捕捉的困难,利用拟守恒格式的思想避免物质界面处的非物理振荡。数值模拟结果表明,本方法具有高阶精度、高分辨率,且节约计算量,并且可以有效避免物质界面处非物理振荡。Abstract: Numerical simulation of multi-material flows has been an important issues in CFD, and most CFD production codes used for multi-material flow simulation is of either first or second order accuracy, too inefficient and costly with its grid refinement for high accuracy required problems. In this paper, a high-order, efficient, compact method, called the spectral volume method, was developed for the simulation of the multi-material flow as an extension of the spectral volume method for the conservation laws. It has been pointed out that the conservative spectral volume method for the multi-material flow will cause oscillation, and the reason for this has been analyzed. So the idea of quasi-conservative scheme was borrowed to prevent the spurious oscillations in the vicinity of a material contact discontinuity. Several numerical experiments proved that there is no oscillation near the material interface and the result also demonstrates the accuracy, the efficiency and the high performance of the scheme for the multi-material flow simulation.
-
Key words:
- fluid mechanics /
- spectral volume method /
- high order /
- stiffened gas /
- multi-component flows /
- compact stencil
-
表 1 格式的数值精度
Table 1. Numerical accuracy of present schemes
N Lerr1 order Lerr1 order Lerr1 order Lerr1 order k=2 k=3 k=4 k=4 10 4.80×10-3 - 3.91×10-4 - 7.22×10-6 - 4.69×10-7 - 20 1.17×10-4 2.04 6.77×10-5 2.53 4.34×10-7 4.06 1.93×10-8 4.60 40 2.93×10-5 2.00 9.64×10-6 2.81 2.47×10-8 4.14 6.79×10-10 4.83 80 7.34×10-5 2.00 1.26×10-6 2.94 1.56×10-9 3.98 2.21×10-11 4.94 160 1.84×10-5 2.00 1.59×10-7 2.99 9.77×10-11 4.00 6.85×10-13 5.01 -
[1] Abgrall R. How to prevent pressure oscillations in multicomponent flow calculation: A quasi conservative approach[J]. Journal of Computational Physics, 1996, 125(1):150-160. doi: 10.1006/jcph.1996.0085 [2] Abgrall R, Karni S. Computations of compressible multifluids[J]. Journal of Computational Physics, 2001, 169(2):594-623. doi: 10.1006/jcph.2000.6685 [3] Shyue K M. An effcient shock-capturing algorithm for compressible multicomponent problems[J]. Journal of Computational Physics, 1998, 142(1):208-242. http://cn.bing.com/academic/profile?id=0353bed7b41acec082faa9e0749fd595&encoded=0&v=paper_preview&mkt=zh-cn [4] Shyue K M. A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Gruneisen equation of state[J]. Journal of Computational Physics, 2001, 171(2):678-707. doi: 10.1006/jcph.2001.6801 [5] Chen Y B, Jiang S. A non-oscillatory kinetic scheme for multicomponent flows with the equation of state for a stiffned gas[J]. Journal of Computational Mathematics, 2011, 29(6):661-683. doi: 10.4208/jcm [6] Johnsen E, Colonius T. Implementation of WENO schemes in compressible multicomponent flow problems[J]. Journal of Computational Physics, 2006, 219(2):715-732. http://www.sciencedirect.com/science/article/pii/S0021999106002014 [7] Zhu J, Qiu J X, Liu T G, et al. RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations[J]. Applied Numerical Mathematics, 2011, 61(4):554-580. doi: 10.1016/j.apnum.2010.12.002 [8] Wang Z J. Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation[J]. Journal of Computational Physics, 2002, 178(1):210-251. doi: 10.1006/jcph.2002.7041 [9] Wang Z J, Liu Y. Spectral (finite) volume method for conservation laws on unstructured grids Ⅲ: One dimensional systems and partition optimization[J]. Journal of Scientific Computing, 2004, 20(1):137-157. http://www.sciencedirect.com/science/article/pii/S0021999103005035 [10] Karni S. Multicomponent flow calculations by a consistent primitive algorithm[J]. Journal of Computational Physics, 1994, 112(1):31-43. http://dl.acm.org/citation.cfm?id=182760 期刊类型引用(5)
1. 李彦军,陈旭,曾庆鹏,杨龙滨,史建新. 舰船动力设备抗冲击评估方法综述. 中国舰船研究. 2024(03): 61-85 .
百度学术2. 洪晓文,李伟兵,李文彬,徐赫阳,李军宝. 多层复合装药爆炸冲击波信号能量谱. 兵工学报. 2020(11): 2243-2251 .
百度学术3. 谢耀国,姚熊亮,崔洪斌,李新飞. 基于小波分析的实船水下爆炸船体响应特征. 爆炸与冲击. 2017(01): 99-106 .
本站查看4. 闫睿,裴东兴,崔春生. 基于小波变换的CO_2预裂腔内压力时频特征分析. 现代电子技术. 2017(21): 98-101 .
百度学术5. 伍俊,杨益,庄铁栓. 水中爆炸作用机理及毁伤效应研究综述. 火炸药学报. 2016(01): 1-13 .
百度学术其他类型引用(3)
-
推荐阅读
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
远场冲击波下螺旋桨毁伤与空化特征研究
王志凯 等, 爆炸与冲击, 2025
Cl-20基高爆速压装炸药的落锤冲击响应特性
徐风 等, 爆炸与冲击, 2025
超高速撞击条件下混凝土靶体内 应力波的测量和分析
钱秉文 等, 爆炸与冲击, 2025
基于小波变换的爆炸电磁辐射研究
朱汪平 等, 高压物理学报, 2023
乳化炸药水下爆炸载荷输出特性实验研究
郑欣颖 等, 高压物理学报, 2022
水下接触爆炸作用下金属/cfrp复合层合板的防护性能
赵豫熙 等, 高压物理学报, 2024
Targeting galectin-3 in inflammatory and fibrotic diseases
Bouffette, Selena et al., TRENDS IN PHARMACOLOGICAL SCIENCES, 2023
A spatiotemporal casualty assessment method caused by earthquake falling debris of building clusters considering human emergency behaviors
INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2025
Study on internal rise law of fracture water pressure and progressive fracture mechanism of rock mass under blasting mpact
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY



下载:
百度学术