铝粉含量和粒度对CL-20含铝炸药水中爆炸反应特性的影响

胡宏伟 严家佳 陈朗 郭炜 宋浦

胡宏伟, 严家佳, 陈朗, 郭炜, 宋浦. 铝粉含量和粒度对CL-20含铝炸药水中爆炸反应特性的影响[J]. 爆炸与冲击, 2017, 37(1): 157-161. doi: 10.11883/1001-1455(2017)01-0157-05
引用本文: 胡宏伟, 严家佳, 陈朗, 郭炜, 宋浦. 铝粉含量和粒度对CL-20含铝炸药水中爆炸反应特性的影响[J]. 爆炸与冲击, 2017, 37(1): 157-161. doi: 10.11883/1001-1455(2017)01-0157-05
Hu Hongwei, Yan Jiajia, Chen Lang, Guo Wei, Song Pu. Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20-based explosives containing aluminum[J]. Explosion And Shock Waves, 2017, 37(1): 157-161. doi: 10.11883/1001-1455(2017)01-0157-05
Citation: Hu Hongwei, Yan Jiajia, Chen Lang, Guo Wei, Song Pu. Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20-based explosives containing aluminum[J]. Explosion And Shock Waves, 2017, 37(1): 157-161. doi: 10.11883/1001-1455(2017)01-0157-05

铝粉含量和粒度对CL-20含铝炸药水中爆炸反应特性的影响

doi: 10.11883/1001-1455(2017)01-0157-05
基金项目: 

总装重大预先研究专项项目 00401030701

详细信息
    作者简介:

    胡宏伟(1982—),男,硕士,副研究员

    通讯作者:

    宋浦, songpu73@163.com

  • 中图分类号: O381

Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20-based explosives containing aluminum

  • 摘要: 为了研究CL-20基含铝炸药的爆炸反应机理,利用水中爆炸实验,测量了不同铝粉含量和粒度的CL-20炸药水中爆炸的冲击波参数、二次压力波参数,计算了冲击波能和气泡能。结果表明,水中爆炸的冲击波能和气泡能表征了爆轰和二次反应两个阶段的炸药爆炸能量分配,CL-20炸药中的铝粉主要在二次反应阶段发生反应,只有少部分的铝粉参与了早期的爆轰反应。气泡脉动形成的二次压力波能描述铝粉含量和粒度对二次反应过程的影响,铝粉含量对炸药的二次反应有显著的影响;铝粉粒度对炸药的水下爆炸的初始冲击波参数、冲击波能和气泡能的影响很小,对铝粉与爆轰产物的二次反应速率影响较大。
  • 图  1  冲击波压力波形

    Figure  1.  Shock wave pressure history

    图  2  气泡脉冲波形

    Figure  2.  Bubble pulse profile

    表  1  炸药组分

    Table  1.   Explosives formulation

    样品 ρ/(g·cm-3) m/g ω(CL-20)/% ω(Al)/% ω(LiF)/% ω(黏结剂)/%
    1 1.94 12.04 80.0 15.0 0 5
    2 1.94 12.05 80.0 0 15 5
    3 1.94 18.20 95.0 0 0 5
    4 2.00 19.20 81.5 13.5 0 5
    5 2.06 19.80 70.0 25.0 0 5
    6 2.11 20.50 60.0 35.0 0 5
    7 2.00 19.20 81.5 13.5 0 5
    下载: 导出CSV

    表  2  CL-20基炸药的水下爆炸冲击波与气泡参数和能量

    Table  2.   Shock wave and bubble parameter and energy of underwater explosion for CL-20-based explosives

    样品 ps, max/MPa Is/(Pa·s) es/(MJ·kg-1) eb/(MJ·kg-1)
    1 24.25 916.4 1.229 3.319
    2 23.11 797.5 1.039 1.919
    下载: 导出CSV

    表  3  CL-20基炸药的水中爆炸参数

    Table  3.   Parameters of underwater explosion for CL-20-based explosives

    样品 ΔTb/ms ps, max/MPa pb, max/MPa pb, max/ps, max Is/(kPa·s) Ib/(kPa·s) Ib/Is
    3 2.98 29.25 2.60 0.089 1.10 2.36 2.15
    4 4.39 28.00 2.44 0.087 1.12 3.23 2.88
    5 5.25 27.36 2.03 0.074 1.71 3.79 2.22
    6 7.52 25.70 1.78 0.069 1.64 4.21 2.57
    下载: 导出CSV

    表  4  含两种粒度铝粉的CL-20基炸药的水下爆炸参数

    Table  4.   Parameters of underwater explosion for CL-20-based explosives containing powders with two particle sizes

    样品 ps, max/MPa Is/(kPa·s) es/(MJ·kg-1) tb/ms eb/(MJ·kg-1) pb, max/MPa ΔTb/ms Ib/(kPa·s)
    4 28.00 1.116 1.503 69.98 2.927 2.44 4.39 3.227
    7 27.62 1.136 1.543 69.84 2.907 2.79 3.51 3.088
    下载: 导出CSV
  • [1] Nicolich S M.Performance and hazard characterization of CL-20 formulations[C]//The 29th Internationl Annual Conference of ICT. Karlsruhe: Fraunhofer ICT, 1998: 1-10.
    [2] Donald A, Geiss J. Additional characterization of high performance CL-20 formulation[C]//Proceedings of 30th Internationl Annual Conference of ICT. Karlsruhe: Fraunhofer ICT, 1999: 167-180.
    [3] Kneisl P. PBXW-16, an insensitive pressed explosive[C]//Proceedings of 30th Internationl Annual Conference of ICT. Karlsruhe: Fraunhofer ICT, 1999: 264-267.
    [4] Hoffman D M. Fatigue of LX-14 and LX-19 plastic bonded explosives[J]. Journal of Energetic Materials, 2000, 18(1):1-27. doi: 10.1080/07370650008216110
    [5] Balas W, Nicolish S, Capellos C. CL-20 PAX explosives formulation developmentt, characterization, and testing[C]//NDIA 2003 IM/EM Technology Symposium. Miami, 2003: 181-185.
    [6] Lee K E, Hatch R L, Braithwaite P. Method for making high performance explosive formulations containing CL-20: US, US 6217799 B1[P]. 2001-04-17. http://www.wanfangdata.com.cn/details/detail.do?_type=patent&id=US19980166843
    [7] Cook M A, Filler A S, Keyes R T, et al. Aluminized explosives[J]. Journal of Physical Chemistry, 1957, 61(2):189-196. doi: 10.1021/j150548a013
    [8] Miller P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives[J]. Materials Research Society, 1996, 21(2):413-420. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=OPL418OPLOPL418S1946427400194527h.xml
    [9] Pastine D J, Cowperthwaite M, Solomon J M, et al. A model of non-ideal detonation in aluminized explosives[C]//The 11th International Detonation Symposium. Colorado: Department of Energy, 1998: 204-213.
    [10] 薛再清, 徐更光, 王延增.用KHT状态方程计算炸药爆轰参数[J].爆炸与冲击, 1998, 18(2):172-176. http://www.bzycj.cn/CN/abstract/abstract10399.shtml

    Xue Zaiqing, Xu Gengguang, Wang Yanzeng. Using KHT equation of state to calculated detonation parameters of explosives[J]. Explosion and Shock Waves, 1998, 18(2):172-176. http://www.bzycj.cn/CN/abstract/abstract10399.shtml
    [11] 陈朗, 张寿齐, 赵玉华.不同铝粉尺寸含铝炸药加速金属能力的研究[J].爆炸与冲击, 1999, 19(3):250-255. http://www.bzycj.cn/CN/Y1999/V19/I3/250

    Chen Lang, Zhang Shouqi, Zhao Yuhua. Study of the metal acceleration capacaities of aluminized explosives with spherical aluminum particles of fidderent diameter[J]. Explosion and Shock Waves, 1999, 19(3):250-255. http://www.bzycj.cn/CN/Y1999/V19/I3/250
    [12] 王建灵, 赵东奎, 郭炜, 等.水下爆炸能量测试中炸药入水深度的确定[J].火炸药学报, 2002, 25(2):30-31;44. doi: 10.3969/j.issn.1007-7812.2002.02.012

    Wang Jianling, Zhao Dongkui, Guo Wei, et al. Determination of reasonable depth of explosives in water to measure underwater explosion energy[J]. Chinese Journal of Explosives & Propellants, 2002, 25(2):30-31;44. doi: 10.3969/j.issn.1007-7812.2002.02.012
    [13] Bjarnholt G. Suggestions on standards for measurement and data evaluation in the underwater explosion test[J]. Propellants Explosives, Pyrotechnics, 1980, 5(2/3):67-74. doi: 10.1002-prep.19800050213/
    [14] Murata K, Takahashi K, Kato Y. Precise measurements of underwater explosion phenomena by pressure sensor using fluoropolymer[J]. Journal of Materials Processing Technology, 1999, 85:39-42. doi: 10.1016/S0924-0136(98)00251-9
    [15] Murata K, Takahashi K, Kato Y. Measurements of underwater explosion performances by pressure gauge using fluoropolymer[C]//The 12th International Detonation Symposium. San Diego: Department of Energy, 2002: 336-343.
    [16] 奥尔连科Л П.爆炸物理学[M].3版.孙承纬, 译.北京: 科学出版社, 2011: 347-364.
    [17] Arnold W, Rottenkolber E. Thermobaric charges: Modelling and testing[C]//The 38th Internationl Annual Conference of ICT. Karlsruhe: Fraunhofer ICT, 2007: 26-29.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  4640
  • HTML全文浏览量:  1632
  • PDF下载量:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-23
  • 修回日期:  2015-07-13
  • 刊出日期:  2017-01-25

目录

    /

    返回文章
    返回