固体火箭燃气射流驱动液柱过程的CFD分析

王健 阮文俊 王浩 张磊

王健, 阮文俊, 王浩, 张磊. 固体火箭燃气射流驱动液柱过程的CFD分析[J]. 爆炸与冲击, 2017, 37(2): 186-193. doi: 10.11883/1001-1455(2017)02-0186-08
引用本文: 王健, 阮文俊, 王浩, 张磊. 固体火箭燃气射流驱动液柱过程的CFD分析[J]. 爆炸与冲击, 2017, 37(2): 186-193. doi: 10.11883/1001-1455(2017)02-0186-08
Wang Jian, Ruan Wenjun, Wang Hao, Zhang Lei. CFD analysis on the process of solid rocket gas jet driving liquid column[J]. Explosion And Shock Waves, 2017, 37(2): 186-193. doi: 10.11883/1001-1455(2017)02-0186-08
Citation: Wang Jian, Ruan Wenjun, Wang Hao, Zhang Lei. CFD analysis on the process of solid rocket gas jet driving liquid column[J]. Explosion And Shock Waves, 2017, 37(2): 186-193. doi: 10.11883/1001-1455(2017)02-0186-08

固体火箭燃气射流驱动液柱过程的CFD分析

doi: 10.11883/1001-1455(2017)02-0186-08
详细信息
    作者简介:

    王健(1990-),男,博士研究生

    通讯作者:

    阮文俊,ruanwj@njust.edu.cn

  • 中图分类号: O381

CFD analysis on the process of solid rocket gas jet driving liquid column

  • 摘要: 固体火箭燃气射流驱动液柱过程会产生一个复杂的非稳态多相流场,为了研究液柱对固体火箭发动机工作过程中射流流场的降温效果,并揭示燃气冲击液柱的流动演化和气水之间的相互作用,利用FLUENT软件中耦合了液态水汽化方程的VOF多相流计算模型对燃气与液柱之间的耦合流动及相变过程进行了数值模拟,并与无液柱情况下射流流场的计算结果进行了对比分析。计算结果表明,当有液柱平衡体时射流流场中的压力、温度、速度波动幅度均减小,减弱了射流流场中的湍流脉动强度;液柱与燃气之间的汽化以及液柱的阻碍作用减小了射流流场的轴向发展位移,尾管后的完全发展射流流场核心区域内的压力峰值降低了0.9 MPa,温度峰值降低了503 K,速度峰值降低了291 m/s,验证了实验中液柱对燃气射流流场的降温效果。
  • 图  1  计算区域(单位:mm)

    Figure  1.  Computational domain (unit: mm)

    图  2  喷管扩张段尺寸(单位:mm)

    Figure  2.  Expanding zone size of the nozzle (unit: mm)

    图  3  实验喷管结构(单位:mm)

    Figure  3.  Structure of the experiment nozzle (unit: mm)

    图  4  燃气射流在大气环境中的扩展过程

    Figure  4.  Expansion process of combustion-gas jet in the atmospheric environment

    图  5  气液射流在大气环境中的扩展过程

    Figure  5.  Expansion process of water-gas jet in the atmospheric environment

    图  6  不同时刻液相体积分数分布云图

    Figure  6.  Cloud image of volume fraction of liquid at different times

    图  7  实验和数值模拟条件下射流流场轴线速度曲线

    Figure  7.  Axial velocity of the jet flow field from experiment and numerical simulation

    图  8  有、无液体水柱的射流流场参数沿轴线变化

    Figure  8.  Parameters of flow field on the axis with and without water column

    图  9  有无液体水柱的射流流场温度等值线

    Figure  9.  `Contour map of flow field temperature with and without water column

  • [1] Molnar M M. New reduced two-time step method for calculating combustion and emission rates of jet-A and methane fuel with and without water injection: AIAA 2004-2130[R]. NASA, 2004.
    [2] Giordan P, Fleury P, Guidon I. Simulation of water injection into a rocket motor plume[C]//Los Angeles: AIAA/ASME/SAE/ASEE 35th Joint Propulsion Conference and Exhibit, 1999.
    [3] 周帆, 姜毅, 郝继光.火箭发动机尾焰流场注水降温效果初探[J].推进技术, 2012, 33(2), 249-252. http://d.old.wanfangdata.com.cn/Periodical/tjjs201202015

    Zhou Fan, Jiang Yi, Hao Jiguang. Exploring on cooling effect of water injection on rocket motor exhaust[J]. Journal of Propulsion Technology, 2012, 33(2):249-252. http://d.old.wanfangdata.com.cn/Periodical/tjjs201202015
    [4] 马艳丽, 姜毅, 王伟臣, 等.喷水对火箭发动机羽流红外特性的抑制作用研究[J].北京理工大学学报, 2011, 31(7):776-780. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201107006

    Ma Yanli, Jiang Yi, Wang Weichen, et al. Research on infrared radiation suppression of rocket motor exhaust plume with water injection[J]. Transactions of Beijing institute of Technology, 2011, 31(7):776-780. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201107006
    [5] 张磊, 阮文俊, 王浩.单兵火箭燃气射流噪声抑制的实验研究[J].火力与指挥控制, 2015, 40(7):174-176. doi: 10.3969/j.issn.1002-0640.2015.07.043

    Zhang Lei, Ruan Wenjun, Wang Hao. Experimental study on restraint of individual rocket jet noise[J]. Fire Control and Command Control, 2015, 40(7):174-176. doi: 10.3969/j.issn.1002-0640.2015.07.043
    [6] Sutherland L C. Effect of water to ablative performance under solid rocket exhaust environment[C]//Monterey: AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit, 1993.
    [7] Kandula M, Lonergan M. Effective jet properties for the estimation of turbulent mixing noise reduction by water injection: AIAA 2007-3645[R]. AIAA, 2007.
    [8] Thomas D N. Reductions in multi-component jet noise by water injection: AIAA 2004-2976[R]. Hampton, VA, USA: NASA Langley Research, 2004.
    [9] 王兴, 郑刘, 周月荣.不同喷嘴射流流场结构及噪声[J].推进技术, 2011, 32(3):365-369. http://d.old.wanfangdata.com.cn/Periodical/tjjs201103013

    Wang Xing, Zheng Liu, Zhou Yuerong. Flow field structure and noise for different nozzles[J]. Journal of Propulsion Technology, 2011, 32(3):365-369. http://d.old.wanfangdata.com.cn/Periodical/tjjs201103013
    [10] 汪海洋, 李晓东.超声速喷流啸声的控制方法[J].推进技术, 2007, 28(2):211-215. doi: 10.3321/j.issn:1001-4055.2007.02.023

    Wang Haiyang, Li Xiaodong. Control methods for sup-ersonic jet screech tones[J]. Journal of Propulsion Technology, 2007, 28(2):211-215. doi: 10.3321/j.issn:1001-4055.2007.02.023
    [11] 万云霞, 黄勇, 朱英.液体圆柱射流破碎过程实验[J].航空动力学报, 2008, 23(2):208-214. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200802002

    Wan Yunxia, Huang Yong, Zhu Ying. Experiment on the breakup process of free round liquid jet[J]. Journal of Aerospace Power, 2008, 23(2):208-214. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200802002
    [12] 甘晓松, 贾有军, 鲁传敬.水下燃气射流流场数值研究[J].固体火箭技术, 2009, 32(1):23-26. doi: 10.3969/j.issn.1006-2793.2009.01.006

    Gan Xiaosong, Jia Youjun, Lu Chuanjing.Research on numerial simulation of combustion gas jet under water[J]. Journal of Solid Rocket Technology, 2009, 32(1):23-26. doi: 10.3969/j.issn.1006-2793.2009.01.006
    [13] 王乐勤, 郝宗睿, 吴大转.水下气体射流初期流场的数值研究[J].工程热物理学报, 2009, 30(7):1132-1135. doi: 10.3321/j.issn:0253-231X.2009.07.014

    Wang Leqin, Hao Zongrui, Wu Dazhuan.Numerical simulation of initial flow field of underwater gas jet[J]. Journal of Engineering Thermophysics, 2009, 30(7):1132-1135. doi: 10.3321/j.issn:0253-231X.2009.07.014
    [14] 向敏, 吴雄, 张为华, 等.水下固体发动机尾流场数值计算[J].推进技术, 2009, 30(4):479-483. doi: 10.3321/j.issn:1001-4055.2009.04.018

    Xiang Min, Wu Xiong, Zhang Weihua, et al. Numerical simulation for underwater solid motor tail flow[J]. Journal of Propulsion Technology, 2009, 30(4):479-483. doi: 10.3321/j.issn:1001-4055.2009.04.018
    [15] 汪送, 战仁军, 张威, 等.管内高压气体冲击静态液柱的CFD模拟[J].火力与指挥控制, 2011, 36(3):45-48. doi: 10.3969/j.issn.1002-0640.2011.03.012

    Wang Song, Zhan Renjun, Zhang Wei, et al. CFD Simulation of high-pressure gas impinging onto static water-pole in pipe[J]. Fire Control and Command Control, 2011, 36(3):45-48. doi: 10.3969/j.issn.1002-0640.2011.03.012
    [16] 罗喜胜, 翟志刚, 司廷, 等.激波诱导下的气体界面不稳定性实验研究[J].力学进展, 2014, 44(7):260-290. http://cdmd.cnki.com.cn/Article/CDMD-10358-1013110422.htm

    Luo Xisheng, Zhai Zhigang, Si Ting, et al. Experimental study on the interfacial instability induced by shock waves[J]. Advances in Mechanics, 2014, 44(7):260-290. http://cdmd.cnki.com.cn/Article/CDMD-10358-1013110422.htm
    [17] 施红辉, 肖毅, 吴宇, 等.激波诱导的液柱气液界面RM不稳定性的研究[J].工程热物理学报, 2014, 35(9):1775-1779. http://www.cqvip.com/QK/90922X/201409/71678266504849524857485049.html

    Shi Honghui, Xiao Yi, Wu Yu, et al. Experiment study on the richtmyer-meshkov instability in the interaction of shock waves with liquid columns[J]. Journal of Engineering Thermophysics, 2014, 35(9):1775-1779. http://www.cqvip.com/QK/90922X/201409/71678266504849524857485049.html
    [18] 王翠华.激波与液体相互作用实验研究[D].南京: 南京理工大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10288-2009197588.htm
  • 加载中
图(9)
计量
  • 文章访问数:  4244
  • HTML全文浏览量:  1340
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-03
  • 修回日期:  2016-09-08
  • 刊出日期:  2017-03-25

目录

    /

    返回文章
    返回