边界条件对甲烷预混气爆轰特性的影响

赵焕娟 J.H.S.Lee 张英华 钱新明 严屹然

赵焕娟, J.H.S.Lee, 张英华, 钱新明, 严屹然. 边界条件对甲烷预混气爆轰特性的影响[J]. 爆炸与冲击, 2017, 37(2): 201-207. doi: 10.11883/1001-1455(2017)02-0201-07
引用本文: 赵焕娟, J.H.S.Lee, 张英华, 钱新明, 严屹然. 边界条件对甲烷预混气爆轰特性的影响[J]. 爆炸与冲击, 2017, 37(2): 201-207. doi: 10.11883/1001-1455(2017)02-0201-07
Zhao Huanjuan, J.H.S.Lee, Zhang Yinghua, Qian Xinming, Yan Yiran. Effects of boundary conditions on premixed CH4+2O2 detonation characteristics[J]. Explosion And Shock Waves, 2017, 37(2): 201-207. doi: 10.11883/1001-1455(2017)02-0201-07
Citation: Zhao Huanjuan, J.H.S.Lee, Zhang Yinghua, Qian Xinming, Yan Yiran. Effects of boundary conditions on premixed CH4+2O2 detonation characteristics[J]. Explosion And Shock Waves, 2017, 37(2): 201-207. doi: 10.11883/1001-1455(2017)02-0201-07

边界条件对甲烷预混气爆轰特性的影响

doi: 10.11883/1001-1455(2017)02-0201-07
基金项目: 

国家自然科学基金项目 11602017

中央高校基本科研业务费专项资金项目 FRF-TP-15-105A1

中国博士后科学基金项目 2015M580049

详细信息
    作者简介:

    赵焕娟(1985-),女,博士,讲师

    通讯作者:

    张英华,zyhustd@163.com

  • 中图分类号: O381

Effects of boundary conditions on premixed CH4+2O2 detonation characteristics

  • 摘要: 通过实验研究及数字化处理研究了边界条件对CH4预混气体爆轰特性的影响。在内径为63.5、50.8 mm圆柱形管道及长方体管道进行爆轰实验,得到胞格结构和爆轰速度曲线。烟膜数字化处理量化了预混气体的爆轰不稳定性,并计算出胞格尺寸。3种管道内测得的平均爆轰速度与CJ速度接近,边界条件的影响不明显。分析爆轰速度曲线发现,极限压力受到边界条件的影响,Ø50.8和Ø63.5 mm管道内预混气的极限压力分别为5和4.05 kPa,即随着管径增大,爆轰极限压力降低。数字化处理所得不同管道内烟膜轨迹的不规则程度无明显差别,因此可以认为不稳定性是预混气固有的性质。在相同爆轰初始压力下,管径增大,胞格数量变多,表明爆轰传播时爆轰螺旋头数增多以维持传播。
  • 图  1  Ø50.8 mm爆轰管道结构简图

    Figure  1.  Detonation tube structure with inner diameter of 50.8 mm

    图  2  Ø50.8 mm管道内CH4+2O2预混气不同初始压力下爆轰烟膜

    Figure  2.  Smoked foils of premixed CH4+2O2 in tube with inner diameter of 50.8 mm

    图  3  不同初始压力下Ø50.8 mm管道内CH4+2O2爆轰速度曲线

    Figure  3.  Velocity curves of premixed CH4+2O2 in Ø50.8 mm tube at different initial pressures

    图  4  Ø63.5 mm爆轰管道结构简图

    Figure  4.  Detonation tube structure with inner diameter of 63.5 mm

    图  5  Ø63.5 mm管道内CH4+2O2预混气不同初始压力下爆轰烟膜

    Figure  5.  Smoked foils of premixed CH4+2O2 in tube with inner diameter of 63.5 mm

    图  6  不同初始压力下Ø63.5 mm管道内CH4+2O2爆轰速度曲线

    Figure  6.  Velocity curves of premixed CH4+2O2 in Ø63.5 mm tube at different initial pressures

    图  7  矩形截面管道设计图

    Figure  7.  Structure diagram of the rectangle tube

    图  8  矩形截面管道内CH4+2O2爆轰烟膜

    Figure  8.  Smoked foils of premixed CH4+2O2 in the rectangle tube

    图  9  矩形截面管道内CH4+2O2预混气爆轰速度

    Figure  9.  Velocity of premixed CH4+2O2 in the rectangle tube

    图  10  Ø50.8 mm管道内烟膜轨迹线

    Figure  10.  Trajectory in two sets in tube with inner diameter of 50.8 mm

    图  11  Ø63.5 mm管道内烟膜轨迹线

    Figure  11.  Trajectory in two sets in tube with inner diameter of 63.5 mm

    图  12  Ø50.8 mm管道内典型轨迹柱状图

    Figure  12.  Typical trajectory histograms of tube with inner diameter of 50.8 mm

    图  13  Ø63.5 mm管道内典型轨迹柱状图

    Figure  13.  Typical trajectory histograms of tube with inner diameter of 63.5 mm

    图  14  两种管径爆轰轨迹间距方差

    Figure  14.  Variance of distance between waves in cylindrical tubes

    图  15  圆形管道内胞格尺寸

    Figure  15.  Cell size of waves in cylindrical tubes

  • [1] 姜宗林, 滕宏辉.气相规则胞格爆轰波起爆与传播统一框架的几个关键基础问题研究[J].中国科学, 2012, 42(4):421-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200276792

    Jiang Zonglin, Teng Honghui. Research on some fundamental problems of the universal frame works for regular gaseous detonation initiation and propagation[J]. Scientia Sininca, 2012, 42(4):421-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200276792
    [2] Kistiakowsky G B, Zinman W G. Gaseous detonations. Ⅶ: A study of thermodynamic equilibration in acetylene-oxygen waves[J]. The Journal of Chemical Physics, 1955, 23(10):1889-1894. doi: 10.1063/1.1740600
    [3] Kistiakowsky G B, Knight H T, Malin M E. Gaseous detonations. Ⅴ: Nonsteady waves in CO-O2 mixtures[J]. The Journal of Chemical Physics, 1952, 20(6):994-1000. doi: 10.1063/1.1700665
    [4] Lee J H S, Bowen J R. Dynamics of exothermicity[M]. Gordon and Breach, 1995.
    [5] Schwartz M, Shaw L. Signal processing: Discrete spectral analysis, detection, and estimation[M]. McGraw-Hill Companies, 1975.
    [6] Oppenheim A V, Schafer R W. Discrete-time signal processing[M]. New Jersy: Prentice Hall, 1989.
    [7] Lee J J, Frost D L, Lee J H S, et al. Digital signal processing analysis of soot foils[J]. Progress in Astronautics and Aeronautics, 1993, 153:182-202. doi: 10.2514/5.9781600866265.0182.0202
    [8] Lee J J, Garinis D, Frost D L, et al. Two-dimensional autocorrelation function analysis of smoked foil patterns[J]. Shock Waves, 1995, 5(3):169-174. doi: 10.1007/BF01435524
    [9] Sharpe G J. Transverse waves in numerical simulations of cellular detonations[J]. Journal of Fluid Mechanics, 2001, 447:31-52. doi: 10.1017/S0022112001005535
    [10] 刘云峰, 王健平.有限谱ENO格式在爆轰波数值模拟中的应用[J].爆炸与冲击, 2003, 23(4):343-348. doi: 10.3321/j.issn:1001-1455.2003.04.011

    Liu Yufeng, Wang Jianping. Numerical simulation of detonation wave with finite spectral ENO scheme[J]. Explosion and Shock Waves, 2003, 23(4):343-348. doi: 10.3321/j.issn:1001-1455.2003.04.011
    [11] 王昌建, 徐胜利.直管内胞格爆轰的基元反应数值研究[J].爆炸与冲击, 2005, 25(5):405-416. doi: 10.3321/j.issn:1001-1455.2005.05.004

    Wang Changjian, Xu Shengli. Numerical study on cellular detonation in a straight tube based on detailed chemical reaction model[J]. Explosion and Shock Waves, 2005, 25(5):405-416. doi: 10.3321/j.issn:1001-1455.2005.05.004
    [12] 徐晓峰, 解立峰, 彭金华, 等.环氧丙烷-空气混合物爆轰波胞格结构的研究[J].爆炸与冲击, 2004, 24(2):158-162. doi: 10.3321/j.issn:1001-1455.2004.02.010

    Xu Xiaofeng, Xie Lifeng, Peng Jinhua, et al. Study on the detonation cellular structure of propylene epoxide-Air[J]. Explosion and Shock Waves, 2004, 24(2):158-162. doi: 10.3321/j.issn:1001-1455.2004.02.010
    [13] Trotsyuk A V, Fomin P A, Vasil'ev A A. Numerical study of cellular detonation structures of methane mixtures[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:394-403. doi: 10.1016/j.jlp.2015.03.012
    [14] 刘岩, 武丹, 王健平.低马赫数下斜爆轰波的结构[J].爆炸与冲击, 2015, 35(2):203-207. http://www.bzycj.cn/CN/abstract/abstract9448.shtml

    Liu Yan, Wu Dan, Wang Jianping. Structure of oblique detonation wave at low in flow Mach number[J]. Explosion and Shock Waves, 2015, 35(2):203-207. http://www.bzycj.cn/CN/abstract/abstract9448.shtml
    [15] 张旭东, 范宝春, 潘振华, 等.旋转爆轰胞格结构的实验和数值研究[J].爆炸与冲击, 2011, 31(4):337-342. http://www.bzycj.cn/CN/abstract/abstract8680.shtml

    Zhang Xudong, Fan Baochun, Pan Zhenhua, et al. Experimental and numerical investigation on cellular patterns of rotating detonations[J]. Explosion and Shock Waves, 2011, 31(4):337-342 http://www.bzycj.cn/CN/abstract/abstract8680.shtml
    [16] Teng H, Ng H D, Li K, et al. Evolution of cellular structures on oblique detonation surfaces[J]. Combustion and Flame, 2015, 162(2):470-477. doi: 10.1016/j.combustflame.2014.07.021
    [17] 张博, 白春华.气相爆轰动力学特征研究进展[J].中国科学:物理学, 力学, 天文学, 2014, 44(7):665-681. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201407002.htm

    Zhang Bo, Bai Chunhua. Research progress on the dynamic characteristics of gaseous detonation[J]. Scientia Sinica: Physica, Mechanica, and Astronomica, 2014, 44(7):665-681. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201407002.htm
  • 加载中
图(15)
计量
  • 文章访问数:  4651
  • HTML全文浏览量:  1279
  • PDF下载量:  468
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-31
  • 修回日期:  2015-10-27
  • 刊出日期:  2017-03-25

目录

    /

    返回文章
    返回