Processing math: 16%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

半空间双相压电介质垂直边界附近圆孔对SH波的散射

张希萌 齐辉 项梦

张希萌, 齐辉, 项梦. 半空间双相压电介质垂直边界附近圆孔对SH波的散射[J]. 爆炸与冲击, 2017, 37(4): 591-599. doi: 10.11883/1001-1455(2017)04-0591-09
引用本文: 张希萌, 齐辉, 项梦. 半空间双相压电介质垂直边界附近圆孔对SH波的散射[J]. 爆炸与冲击, 2017, 37(4): 591-599. doi: 10.11883/1001-1455(2017)04-0591-09
Zhang Ximeng, Qi Hui, Xiang Meng. Scattering of SH-wave by a circular cavity near the vertical boundary in the piezoelectric bi-material half-space[J]. Explosion And Shock Waves, 2017, 37(4): 591-599. doi: 10.11883/1001-1455(2017)04-0591-09
Citation: Zhang Ximeng, Qi Hui, Xiang Meng. Scattering of SH-wave by a circular cavity near the vertical boundary in the piezoelectric bi-material half-space[J]. Explosion And Shock Waves, 2017, 37(4): 591-599. doi: 10.11883/1001-1455(2017)04-0591-09

半空间双相压电介质垂直边界附近圆孔对SH波的散射

doi: 10.11883/1001-1455(2017)04-0591-09
基金项目: 

黑龙江省自然科学基金项目 A201404

详细信息
    作者简介:

    张希萌(1989-),男,博士研究生

    通讯作者:

    齐辉,qihui205@sina.com

  • 中图分类号: O343.4

Scattering of SH-wave by a circular cavity near the vertical boundary in the piezoelectric bi-material half-space

  • 摘要: 利用“Green函数法”和“镜像法”对垂直边界附近含圆孔的半空间双相压电介质对SH波的散射问题进行分析,得到其稳态解。利用镜像法得到满足水平边界应力自由与电位移自由的波函数解析表达式。根据垂直边界连续性条件,利用“契合法”建立第一类Fredholm型积分方程组,得到圆孔周边的动应力集中系数与电场强度集中系数解析表达式。数值算例分析了入射波频率、入射角度、介质参数等对动应力集中系数与电场强度集中系数的影响,并与已有文献进行比较。计算表明,高频SH波垂直入射危害较大。
  • 压电介质具有机-电耦合效应,广泛应用于智能结构和传感器元件中,实现结构的自我诊断、自我修复等功能,因此其在未来航空航天飞行器设计中占有重要地位。由于加工工艺、环境变化等因素,复合材料会产生圆孔等缺陷,这些缺陷存在于界面附近(材料性质变化最剧烈)时,会引起材料失效、破坏等问题,例如压电元件在生产加工过程中形成的圆孔,其动应力集中问题比一般材料更复杂。许多学者对缺陷问题进行了研究并取得了丰富成果[1-11]。近年来,舒小平等[1]利用等效单层理论求解了正交压电复合材料层板在各类边界条件下的解析解;王永健等[2]利用理论对各项同性压电双材料中椭圆圆孔孔边裂纹的反平面问题进行分析;C.F.Gao等[3]利用复变函数法研究了压电介质中椭圆形孔洞进行了断裂力学分析;K.L.Lee等[4]对压电介质中斜椭圆孔的断裂问题进行了分析;J.K.Du等[5]利用波函数展开法对部分脱胶夹杂对反平面剪切波的散射问题进行了研究;W.J.Feng等[6]利用奇异积分方程技术研究了压电材料中脱胶夹杂对SH波的散射问题;宋天舒等[7-9]研究了全空间双相压电介质中水平边界附近圆孔的动力学问题。本文中,利用“Green函数法”和“镜像法”构造出满足水平边界应力与电位移自由、垂直边界连续性条件的波函数。根据直角域垂直边界上连续性条件,利用“契合法”建立第一类Fredholm型积分方程组并进行求解。通过具体算例和数值结果,讨论入射角度、入射频率、介质参数等对压电材料力学和电学性质的影响。

    图 1所示,介质Ⅰ为含圆孔的直角域,其质量密度、弹性常数、压电系数和介电常数分别为ρ1c44e15κ11,其水平边界、垂直边界分别为ΓHΓV,圆孔中心位置与垂直边界ΓV距离为d,与水平边界ΓH距离为h,其边界为ΓC;介质Ⅱ为无缺陷的直角域,其质量密度、弹性常数、压电系数和介电常数分别为ρ2c44e15κ11;圆孔内空气的压电常数和介电常数分别为e15cκ11c。本文采用坐标变换法,建立坐标系xOyxOy′,对应的复坐标系分别为η=x+iy=reiθη′=x′+iy′=r′eiθ,两坐标系之间关系为:

    图  1  含圆孔的半空间双相压电介质模型
    Figure  1.  Model of a piezoelectric bi-material in half space with a circular cavity
    x=xd,y=yh (1)

    z轴为压电材料的电极化方向,则反平面动力学问题的稳态控制方程(忽略时间因子e-iωt)为:

    {c44 2w+e15 2φ+ρω2w=0e15 2wκ11 2φ=0 (2)

    式中:wφ分别为压电材料的平面位移和电势,ω为SH波的圆频率。令φ =e15(w+f)/κ11,则式(1)可以简化为:

    {2w+k2w=02f=0 (3)

    式中:波数k=ρω2/c,c=c44+e215/κ11

    利用复变函数法,令η=x+iy,ˉη=xiy,在复平面(η, η)中,控制方程转化为:

    {2wηˉη+14k2w=02fηˉη=0 (4)

    在复平面(η, η)内采用极坐标系,令η=reiθ,ˉη=reiθ,则本构方程为:

    {τrz=(c44+e215κ11)(wηeiθ+wˉηeiθ)+e215κ11(fηeiθ+fˉηeiθ)    τθz=i(c44+e215κ11)(τηeiθτˉηeiθ)+ie215κ11(fηeiθfˉηeiθ)Dr=e15(fηeiθ+fˉηeiθ)                                                Dθ=ie15(fηeiθfˉηeiθ)                                                 (5)

    式中:τrzτθz分别的压电介质的径向和切向应力,DrDθ分别为圆孔中电场的径向和切向电位移。直角域介质Ⅰ在线源荷载δ(η-η0)作用下的模型如图 2所示,其中η0=d+iy(yh),表示某个位于介质Ⅰ垂直边界ΓV上的点。

    图  2  受线源荷载作用的直角域模型
    Figure  2.  Right-angle plane model impacted by a line source force

    直角域介质Ⅰ的边界条件可以表示为:

    {ΓH:τyz|y=h=0,Dy|y=h=0ΓV:τxz|x=d=δ(ηη0)ΓC:τrz|r=a,πθπ=0ΓC:Gφ|r=a,πθπ=Gcφ|r=a,πθπΓC:Dr|r=a,πθπ=Dcr|r=a,πθπ (6)

    式中:GwGφ分别表示介质Ⅰ中平面位移和电势的Green函数,上标“Ⅰ”表示与介质Ⅰ相关的物理量;G_{\varphi}^{\mathit{\boldsymbol{c}}}D_{r}^{\mathit{\boldsymbol{c}}}分别表示圆孔内的电势与电位移的Green函数,上标“c”表示圆孔内物理量。

    求解线源荷载δ(η-η0)产生的扰动可得入射波的位移Green函数Gwin。本文中利用“镜像法”构造满足水平垂直边界应力与电位移自由的入射波与散射波,其中与入射波相关的位移Green函数(Gwin)和电势Green函数(Gφin)表达式为:

    \left\{ {\begin{array}{*{20}{c}} {G_w^{{\rm{in}}} = \frac{{\rm{i}}}{{2c_{44}^{\rm{Ⅰ}}\left( {1 + {\lambda ^{\rm{Ⅰ}}}} \right)}}\left[ {H_0^{(1)}\left( {{k_1}\left| {\eta - {\eta _0}} \right|} \right) + H_0^{(1)}\left( {{k_1}\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|} \right)} \right]}\\ {G_\varphi ^{{\rm{in}}} = \frac{{e_{15}^{\rm{Ⅰ}}}}{{\kappa _{11}^{\rm{Ⅰ}}}}G_w^{{\rm{in}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \end{array}} \right. (7)

    式中:\lambda^{\mathit{\boldsymbol{Ⅰ}}}=\left(e_{15}^{\mathit{\boldsymbol{Ⅰ}}}\right)^{2} /\left(c_{44}^{\mathit{\boldsymbol{Ⅰ}}} \kappa_{11}^{\mathit{\boldsymbol{Ⅰ}}}\right)为量纲一压电参数,上标“in”表示与入射波相关;k1为SH波在介质Ⅰ中的波数,H(1)为第一类Hankel函数,其下标表示阶数。令上标“s”表示与散射波相关,则与散射波相关的位移Green函数(Gws)和电势Green函数(Gφs)表达式为:

    \left\{ \begin{matrix} G_{w}^{\text{s}}=\frac{\text{i}}{2c_{44}^{\text{Ⅰ}}\left( 1+{{\lambda }^{\text{Ⅰ}}} \right)}\sum\limits_{n=-\infty }^{+\infty }{{{A}_{n}}}\sum\limits_{j=1}^{4}{S_{n}^{(j)}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ G_{\varphi }^{\text{s}}=\frac{e_{15}^{\text{Ⅰ}}}{\kappa _{11}^{\text{Ⅰ}}}\left( G_{w}^{\text{s}}+{{f}^{\text{s}}} \right),\ \ \ \ \ \ {{f}^{\text{s}}}=\sum\limits_{n=1}^{+\infty }{\left[ {{B}_{n}}\sum\limits_{j=1}^{4}{\varphi _{1n}^{(j)}}+{{C}_{n}}\sum\limits_{j=1}^{4}{\varphi _{2n}^{(j)}} \right]}\ \ \\ \end{matrix} \right. (8)

    式中:

    \begin{array}{l} S_n^{(1)} = H_n^{(1)}\left( {{k_1}|\eta |} \right){[\eta /|\eta |]^n}, \quad S_n^{(2)} = H_n^{(1)}\left( {{k_1}\left| {{\eta _1}} \right|} \right){\left[ {{\eta _1}/\left| {{\eta _1}} \right|} \right]^{ - n}}\\ S_n^{(3)} = {( - 1)^n}H_n^{(1)}\left( {{k_1}\left| {{\eta _z}} \right|} \right){\left[ {{\eta _z}/\left| {{\eta _z}} \right|} \right]^n}, \quad S_n^{(4)} = {( - 1)^n}H_n^{(1)}\left( {{k_1}\left| {{\eta _3}} \right|} \right){\left[ {{\eta _3}/\left| {{\eta _3}} \right|} \right]^{ - n}}\\ \varphi _{1n}^{(1)} = {\eta ^{ - n}}, \quad \;\;\;\;\;\;\varphi _{1n}^{(2)} = {(\bar \eta + 2{\rm{i}}h)^{ - n}}\\ \varphi _{1n}^{(3)} = {( - 1)^n}{(\bar \eta - 2d)^{ - n}}, \quad \varphi _{1n}^{(4)} = {( - 1)^n}{(\eta - 2d - 2{\rm{i}}h)^{ - n}}\\ \varphi _{2n}^{(1)} = {{\bar \eta }^{ - n}}, \quad \varphi _{2n}^{(n)} = {(\eta - 2{\rm{i}}h)^{ - n}}\\ \varphi _{2n}^{(3)} = {( - 1)^n}{(\eta - 2d)^{ - n}}, \quad \varphi _{2n}^{(4)} = {( - 1)^n}{(\bar \eta - 2d + 2{\rm{i}}h)^{ - n}}\\ {\eta _1} = \eta - 2{\rm{i}}h, \quad {\eta _2} = {\eta _1} - 2d, \quad {\eta _3} = \eta - 2d \end{array} (8)

    根据以上结果,可以得到介质Ⅰ中位移Green函数Gw与电势Green函数Gφ,即

    G_w^{\rm{Ⅰ}} = G_w^{{\rm{in}}} + G_w^{\rm{s}}, \quad \;\;\;\;\;G_\varphi ^{\rm{Ⅰ}} = G_\varphi ^{{\rm{in}}} + G_\varphi ^{\rm{s}} (9)

    对于圆孔内部可以形成电场,其电势Green函数(Gφc)的表达式为:

    G_\varphi ^{\rm{c}} = \frac{{e_{15}^{\rm{c}}}}{{\kappa _{11}^{\rm{c}}}}{f^{\rm{c}}}, \quad {f^{\rm{c}}} = {D_0} + \sum\limits_{n = 1}^{ + \infty } {\left( {{D_n}{\eta ^n} + {E_n}{{\bar \eta }^n}} \right)} (10)

    利用边界条件式(6)建立关于AnBnCnDnEn的方程组如下:

    \left\{ {\begin{array}{*{20}{c}} {{\xi ^{(1)}} = \sum\limits_{n = - \infty }^{ + \infty } {{A_n}} \xi _n^{(1)} + \sum\limits_{n = 1}^{ + \infty } {{B_n}} \xi _n^{(12)} + \sum\limits_{n = 1}^{ + \infty } {{C_n}} \xi _n^{(13)} + \sum\limits_{n = 0}^{ + \infty } {{D_n}} \xi _n^{(14)} + \sum\limits_{n = 1}^{ + \infty } {{E_n}} \xi _n^{(15)}}\\ {{\xi ^{(2)}} = \sum\limits_{n = - \infty }^{ + \infty } {{A_n}} \xi _n^{(2)} + \sum\limits_{n = 1}^{ + \infty } {{B_n}} \xi _n^{(21)} + \sum\limits_{n = 1}^{ + \infty } {{C_n}} \xi _n^{(22)} + \sum\limits_{n = 0}^{ + \infty } {{D_n}} \xi _n^{(24)} + \sum\limits_{n = 1}^{ + \infty } {{E_n}} \xi _n^{(25)}}\\ {{\xi ^{(3)}} = \sum\limits_{n = 1}^{ + \infty } {{B_n}} \xi _n^{(32)} + \sum\limits_{n = 1}^{ + \infty } {{C_n}} \xi _n^{(33)} + \sum\limits_{n = 0}^{ + \infty } {{D_n}} \xi _n^{(34)} + \sum\limits_{n = 1}^{ + \infty } {{E_n}} \xi _n^{(35)}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \end{array}} \right. (11)

    式中:

    \hat{\xi }_{n}^{(11)}=\frac{\text{i}{{k}_{1}}}{4}\left[ \sum\limits_{j=1}^{4}{\chi _{n}^{(j)}}\exp (\text{i}\theta )+\sum\limits_{j=1}^{4}{\mathsf{\gamma }_{n}^{(j)}}\exp (-\text{i}\theta ) \right]
    \xi _{n}^{(12)}=\frac{{{\left( e_{15}^{\text{Ⅰ}} \right)}^{2}}}{\kappa _{11}^{\text{Ⅰ}}}\left[ \sum\limits_{j=1}^{2}{\zeta _{n}^{(j)}}\exp (\text{i}\theta )+\sum\limits_{j=1}^{2}{\vartheta _{n}^{(j)}}\exp (-\text{i}\theta ) \right]
    \xi _{n}^{(13)}=\frac{{{\left( e_{15}^{\text{Ⅰ}} \right)}^{2}}}{\kappa _{11}^{\text{Ⅰ}}}\left[ \sum\limits_{j=1}^{2}{v_{n}^{(j)}}\exp (\text{i}\theta )+\sum\limits_{j=1}^{2}{\psi _{n}^{(j)}}\exp (-\text{i}\theta ) \right]
    \xi _n^{(14)} = - \frac{{{{\left( {e_{15}^{\rm{c}}} \right)}^2}}}{{\kappa _{11}^{\rm{c}}}}n{\eta ^n}\exp ({\rm{i}}\theta ), \quad \quad \;\;\;\;\hat \xi _n^{(15)} = - \frac{{{{\left( {e_{15}^{\rm{c}}} \right)}^2}}}{{\kappa _{11}^{\rm{c}}}}n{\bar \eta ^n}\exp ( - {\rm{i}}\theta )
    \xi_{n}^{(21)}=\frac{e_{15}^{\mathit{\boldsymbol{Ⅰ}}} \mathit{{\rm{i}}}}{2 c_{44}^{\mathit{\boldsymbol{Ⅰ}}}\left(1+\lambda^{\mathit{\boldsymbol{Ⅰ}}}\right) \kappa_{11}^{\mathit{\boldsymbol{Ⅰ}}}} \sum\limits_{j=1}^{4} S_{n}^{(j)}, \quad \xi_{n}^{(22)}=\frac{e_{15}^{\mathit{\boldsymbol{Ⅰ}}}}{\kappa_{11}^{\mathit{\boldsymbol{Ⅰ}}}} \sum\limits_{j=1}^{4} \varphi_{1 n}^{(j)}
    \xi_{n}^{(23)}=\frac{e_{15}^{Ⅰ}}{\kappa_{11}^{Ⅰ}} \sum\limits_{j=1}^{4} \varphi_{2 n}^{(j)}, \quad \xi_{n}^{(24)}=-\frac{e_{15}^{\rm{c}}}{\kappa_{11}^{\rm{c}}} \eta^{n}, \quad \xi_{n}^{(25)}=-\frac{e_{15}^{\rm{c}}}{\kappa_{11}^{\rm{c}}} \overline{\eta}^{n}
    \xi_{n}^{(32)}=-e_{15}^{\mathit{\boldsymbol{Ⅰ}}}\left[\sum\limits_{j=1}^{2} \zeta_{n}^{(j)} \exp (\mathit{\rm{i}} \theta)+\sum\limits_{j=1}^{2} \vartheta_{n}^{(j)} \exp (-\mathit{\rm{i}} \theta)\right]
    \hat{\xi}_{n}^{(33)}=-e_{15}^{\mathit{\boldsymbol{Ⅰ}}}\left[\sum\limits_{j=1}^{2} v_{n}^{(j)} \exp (\mathit{\rm{i}} \theta)+\sum\limits_{j=1}^{2} \psi_{n}^{(j)} \exp (-\mathit{\rm{i}} \theta)\right]
    \xi_{n}^{(34)}=e_{15}^{\rm{c}} n \eta^{n-1} \exp (\mathit{\rm{i}} \theta), \quad \quad \xi_{n}^{(35)}=e_{15}^{\mathit{\rm{c}}} n \overline{\eta}^{n-1} \exp (-\mathit{\rm{i}} \theta)
    \begin{array}{l} {\xi ^{(1)}} = - \frac{{{\rm{i}}{k_1}}}{4}\left\{ {\left[ {H_{ - 1}^{(1)}\left( {{k_1}\left| {\eta - {\eta _0}} \right|} \right)} \right.} \right.\frac{{\bar \eta - {{\bar \eta }_0}}}{{\left| {\eta - {\eta _0}} \right|}} + H_{ - 1}^{(1)}\left( {{k_1}\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|} \right)\frac{{\bar \eta - {\eta _0} + 2{\rm{i}}h}}{{\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|}}]{{\rm{e}}^{{\rm{i}}\theta }} + \\ \left[ {H_{ - 1}^{(1)}\left( {{k_1}\left| {\eta - {\eta _0}} \right|} \right)\frac{{\eta - {\eta _0}}}{{\left| {\eta - {\eta _0}} \right|}}} \right. + H_{ - 1}^{(1)}\left( {{k_1}\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|} \right)\frac{{\eta - {{\bar \eta }_0} - 2{\rm{i}}h}}{{\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|}}]{{\rm{e}}^{ - {\rm{i}}\theta }}\} \end{array}
    {\xi ^{(2)}} = - \frac{{{\rm{i}}e_{15}^{\rm{Ⅰ}}}}{{2{c_{44}}\left( {1 + {\lambda ^{\rm{Ⅰ}}}} \right)\kappa _{11}^{\rm{Ⅰ}}}}\left[ {H_0^{(1)}\left( {{k_1}\left| {\eta - {\eta _0}} \right|} \right)} \right. + H_0^{(1)}\left( {{k_1}\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|} \right)], \quad \;\;\;\;{\xi ^{(3)}} = 0
    \chi _n^{(1)} = H_{n - 1}^{(1)}\left( {{k_1}|\eta |} \right){[\eta /|\eta |]^{n - 1}}, \quad \chi _n^{(2)} = - H_{n + 1}^{(1)}\left( {{k_1}\left| {{\eta _1}} \right|} \right){\left[ {{\eta _1}/\left| {{\eta _1}} \right|} \right]^{ - n - 1}}
    \chi _n^{(3)} = {( - 1)^n}H_{n - 1}^{(1)}\left( {{k_1}\left| {{\eta _2}} \right|} \right){\left[ {{\eta _2}/\left| {{\eta _2}} \right|} \right]^{n - 1}}, \quad \chi _n^{(4)} = - H_{n + 1}^{(1)}\left( {{k_1}\left| {{\eta _1}} \right|} \right){\left[ {{\eta _1}/\left| {{\eta _1}} \right|} \right]^{ - n - 1}}
    \gamma_{n}^{(1)}=-H_{n+1}^{(1)}\left(k_{1}|\eta|\right)[\eta /|\eta|]^{n+1}, \quad \gamma_{n}^{(2)}=H_{n-1}^{(1)}\left(k_{1}\left|\eta_{1}\right|\right) \quad\left[\eta_{1} /\left|\eta_{1}\right|\right]^{-n+1}
    \gamma_{n}^{(3)}=-(-1)^{n} H_{n+1}^{(1)}\left(k_{1}\left|\eta_{2}\right|\right)\left[\eta_{2} /\left|\eta_{2}\right|\right]^{n+1}, \quad \gamma_{n}^{(4)}=(-1)^{n} H_{n-1}^{(1)}\left(k_{1}\left|\eta_{3}\right|\right)\left[\eta_{3} /\left|\eta_{3}\right|\right]^{-n+1}
    \zeta_{n}^{(1)}=-n \eta^{-n-1}, \quad \zeta_{n}^{(2)}=-(-1)^{n} n(\eta-2 d-2 \mathit{\rm{i}} h)^{-n-1}
    \vartheta_{n}^{(1)}=-n(\overline{\eta}+2 \mathit{\rm{i}} h)^{-n-1}, \quad \vartheta_{n}^{(2)}=-(-1)^{n} n(\overline{\eta}-2 d)^{-n-1}
    v_{n}^{(1)}=-n(\eta-2 \mathit{\rm{i}} h)^{-n-1}, \quad v_{n}^{(2)}=-n(-1)^{n}(\eta-2 d)^{-n-1}
    \psi_{n}^{(1)}=-n \overline{\eta}^{-n-1}, \quad \psi_{n}^{(2)}=-(-1)^{n} n(\overline{\eta}-2 d+2 \mathit{\rm{i}} h)^{-n-1}

    将式(11)中各等式两端同时乘以e-i(m=0, ±1, ±2, ±3…),在边界ΓC对(-π, π)区间积分,截取有限项,从而得到关于待定系数的线性方程组,求解即可得出AnBnCnDnEn

    与介质Ⅰ类比,设k2为SH波在介质Ⅱ中的波数,λ为介质Ⅱ的量纲一压电参数,则其Green函数的表达式为:

    \left\{ {\begin{array}{*{20}{c}} {G_w^Ⅱ = \frac{\rm{i}}{{2c_{44}^Ⅱ\left( {1 + {\lambda ^Ⅱ}} \right)}}\left[ {H_0^{(1)}\left( {{k_2}\left| {\eta - {\eta _0}} \right|} \right) + H_0^{(1)}\left( {{k_2}\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|} \right)} \right]}\\ {G_\varphi ^Ⅱ = \frac{{e_{15}^Ⅱ}}{{\kappa _{11}^Ⅱ}}G_w^Ⅱ\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \end{array}} \right. (12)

    根据文献[9-11]中方法,由入射波、反射波、折射波、和散射波引起的压电材料位移函数winwrwfws及其激发的电势函数winwrwfws表达式分别为:

    \begin{array}{l} {w^{{\rm{in}}}} = {w_0}\exp \left\{ {\frac{{{\rm{i}}{k_1}}}{2}\left[ {(\eta - d - {\rm{i}}h)\exp \left( { - {\rm{i}}{\alpha _0}} \right) + {\rm{c}}.{\rm{c}}} \right]} \right\} + {w_0}\exp \left\{ {\frac{{{\rm{i}}{k_1}}}{2}\left[ {(\eta - d - {\rm{i}}h)\exp \left( {{\rm{i}}{\alpha _0}} \right) + {\rm{c}}.{\rm{c}}} \right]} \right\}\\ {\varphi ^{{\rm{in}}}} = {\varphi _0}\exp \left\{ {\frac{{{\rm{i}}{k_1}}}{2}\left[ {(\eta - d - {\rm{i}}h)\exp \left( { - {\rm{i}}{\alpha _0}} \right) + {\rm{c}}.{\rm{c}}} \right]} \right\} + {\varphi _0}\exp \left\{ {\frac{{{\rm{i}}{k_1}}}{2}\left[ {(\eta - d - {\rm{i}}h)\exp \left( {{\rm{i}}{\alpha _0}} \right) + {\rm{c}}.{\rm{c}}} \right]} \right\}\\ {w^{\rm{r}}} = {w_1}\exp \left\{ {\frac{{{\rm{i}}{k_1}}}{2}\left[ {(\eta - d - {\rm{i}}h)\exp \left( { - {\rm{i}}{\beta _0}} \right) + {\rm{c}}.{\rm{c}}} \right]} \right\} + {w_1}\exp \left\{ {\frac{{{\rm{i}}{k_1}}}{2}\left[ {(\eta - d - {\rm{i}}h)\exp \left( {{\rm{i}}{\beta _0}} \right) + {\rm{c}}.{\rm{c}}} \right]} \right\}\\ {\varphi ^{\rm{r}}} = {\varphi _1}\exp \left\{ {\frac{{{\rm{i}}{k_1}}}{2}\left[ {(\eta - d - {\rm{i}}h)\exp \left( { - {\rm{i}}{\beta _0}} \right) + {\rm{c}}.{\rm{c}}} \right]} \right\} + {\varphi _1}\exp \left\{ {\frac{{{\rm{i}}{k_1}}}{2}\left[ {(\eta - d - {\rm{i}}h)\exp \left( {{\rm{i}}{\beta _0}} \right) + {\rm{c}}.{\rm{c}}} \right]} \right\}\\ {w^{\rm{f}}} = {w_2}\exp \left\{ {\frac{{{\rm{i}}{k_2}}}{2}\left[ {(\eta - d - {\rm{i}}h)\exp \left( { - {\rm{i}}{\alpha _2}} \right) + {\rm{c}}.{\rm{c}}} \right]} \right\} + {w_2}\exp \left\{ {\frac{{{\rm{i}}{k_2}}}{2}\left[ {(\eta - d - {\rm{i}}h)\exp \left( {{\rm{i}}{\alpha _2}} \right) + {\rm{c}}.{\rm{c}}} \right]} \right\}\\ {w^{\rm{s}}} = \frac{{\rm{i}}}{{2c_{44}^{\rm{Ⅰ}}\left( {1 + {\lambda ^Ⅰ}} \right)}}\sum\limits_{n = - \infty }^{ + \infty } {{K_n}} \sum\limits_{j = 1}^4 {S_n^{(j)}} , \quad {\varphi ^{\rm{s}}} = \frac{{e_{15}^{\rm{Ⅰ}}}}{{\kappa _{11}^{\rm{Ⅰ}}}}\left( {{w^{\rm{s}}} + f_w^{\rm{s}}} \right), \quad f_w^{\rm{s}} = \sum\limits_{n = 1}^\infty {\left[ {{P_n}\sum\limits_{j = 1}^4 {\varphi _{1n}^{(j)}} + {Q_n}\sum\limits_{j = 1}^4 {\varphi _{2n}^{(j)}} } \right]} \\ {\varphi ^{\rm{c}}} = \frac{{e_{15}^{\rm{c}}}}{{\kappa _{11}^{\rm{c}}}}f_w^{\rm{c}}, \quad f_w^{\rm{c}} = {S_0} + \sum\limits_{n = 1}^{ + \infty } {\left( {{S_n}{\eta ^n} + {T_n}{{\bar \eta }^n}} \right)} \end{array} (13)

    式中:c.c表示取前一项的复共轭;β0为反射角度,且β0=π-α0α0为入射角度;α2为折射角度;w0w1w2φ1φ2为常数,满足连续性条件:

    {w_0} + {w_1} = {w_2}, \quad \;\;{\varphi _0} + {\varphi _1} = {\varphi _2}, \quad \;\;{k_1}\sin {\alpha _0} = {k_2}\sin {\alpha _2} (14)

    待定系数KnPnQnSnTn可以根据边界条件(应力自由,电势和电位移连续)进行求解,与上节确定Green函数中系数的方法相同。

    图 3所示,利用“契合法”将两直角域模型介质Ⅰ和介质Ⅱ在垂直边界上“契合”起来,形成半空间模型,其中坐标系xOy′与xOy的关系为η=η′+d+ih。为满足垂直边界上的连续性,根据文献[10]中方法,在垂直边界ΓV上施加一对反平面外力系f_{1}\left(r_{0}^{\prime}, \theta_{0}^{\prime}\right)f_{2}\left(r_{0}^{\prime}, \theta_{0}^{\prime}\right)及一对平面内电场f_{3}\left(r_{0}^{\prime}, \theta_{0}^{\prime}\right)f_{4}\left(r_{0}^{\prime}, \theta_{0}^{\prime}\right)

    图  3  含圆孔的半空间双相压电介质垂直界面的契合
    Figure  3.  Conjunction of piezoelectric bi-material vertical interface in half space with a circular cavity

    在介质Ⅰ中:

    \left\{ {\begin{array}{*{20}{c}} {{w^{\rm{Ⅰ}}} = {w^{{\rm{in}}}} + {w^{\rm{r}}} + {w^{\rm{s}}}}\\ {\tau _{\theta z}^{\rm{Ⅰ}} = \tau _{\theta z}^{{\rm{in}}} + \tau _{\theta z}^{\rm{r}} + \tau _{\theta z}^{\rm{s}}}\\ {{\varphi ^{\rm{Ⅰ}}} = {\varphi ^{{\rm{in}}}} + {\varphi ^{\rm{r}}} + {\varphi ^{\rm{s}}}}\\ {D_\theta ^{\rm{Ⅰ}} = D_\theta ^{{\rm{in}}} + D_\theta ^{\rm{r}} + D_\theta ^{\rm{s}}} \end{array}} \right. (15)

    在介质Ⅱ中:

    {w^{{\rm{Ⅱ}}}} = {w^{\rm{f}}}, \quad \tau _{\theta z}^{{\rm{Ⅱ}}} = \tau _{\theta z}^{\rm{f}}, \quad {\varphi ^Ⅱ} = {\varphi ^{\rm{f}}}, \quad D_\theta ^{{\rm{Ⅱ}}} = D_\theta ^{\rm{f}} (16)

    在垂直边界\theta_{0}^{\prime}=-\pi / 2上,由连续性条件可知:

    \left\{ {\begin{array}{*{20}{c}} {\tau _{\theta z}^{\rm{Ⅰ}}\sin \theta _0^\prime + {f_1}\left( {r_0^\prime , \theta _0^\prime } \right) = \tau _{\theta z}^Ⅱ\sin \theta _0^\prime + {f_2}\left( {r_0^\prime , \theta _0^\prime } \right), \quad {w^{\rm{Ⅰ}}} + {w^{{f_1}}} = {w^Ⅱ} + {w^{{f_2}}}}\\ {D_\theta ^{\rm{Ⅰ}}\sin \theta _0^\prime + {f_3}\left( {r_0^\prime , \theta _0^\prime } \right) = D_\theta ^Ⅱ\sin \theta _0^\prime + {f_4}\left( {r_0^\prime , \theta _0^\prime } \right), \quad {\varphi ^{\rm{Ⅰ}}} + {\varphi ^{{f_3}}} = {\varphi ^Ⅱ} + {\varphi ^{{f_4}}}} \end{array}} \right. (17)

    式中:wf1wf2分别为外力系f_{1}\left(r_{0}^{\prime}, \theta_{0}^{\prime}\right)f_{2}\left(r_{0}^{\prime}, \theta_{0}^{\prime}\right)引起的位移,φf3φf4分别为外电场f_{3}\left(r_{0}^{\prime}, \theta_{0}^{\prime}\right)f_{4}\left(r_{0}^{\prime}, \theta_{0}^{\prime}\right)引起的电势。

    垂直边界ΓV上连续性条件为:

    \left\{ {\begin{array}{*{20}{c}} {{w^{{\rm{in}}}} + {w^{\rm{r}}} = {w^{\rm{f}}}, \quad \tau _{\theta z}^{{\rm{in}}} + \tau _{\theta z}^{\rm{r}} = \tau _{\theta z}^{\rm{f}}}\\ {{\varphi ^{{\rm{in}}}} + {\varphi ^{\rm{r}}} = {\varphi ^{\rm{f}}}, \quad D_\theta ^{{\rm{in}}} + D_\theta ^{\rm{r}} = D_\theta ^{\rm{f}}} \end{array}} \right. (18)

    利用式(17)对式(16)进行简化,得到关于外力系的积分方程如下:

    {f_1}\left( {r_0^\prime , \theta _0^\prime } \right) = {f_2}\left( {r_0^\prime , \theta _0^\prime } \right), \quad \int_0^\infty {{f_1}} \left( {r_0^\prime , \theta _0^\prime } \right)\left[ {G_w^{(1)}\left( {r_0^\prime , \theta _0^\prime ;r, \theta } \right) + G_w^{(2)}\left( {r_0^\prime , \theta _0^\prime ;r, \theta } \right)} \right]{\rm{d}}r_0^\prime = - {w^{\rm{s}}} (19)
    {f_3}\left( {r_0^\prime , \theta _0^\prime } \right) = {f_4}\left( {r_0^\prime , \theta _0^\prime } \right), \quad \int_0^\infty {{f_3}} \left( {r_0^\prime , \theta _0^\prime } \right)\left[ {G_\varphi ^{(1)}\left( {r_0^\prime , \theta _0^\prime ;r, \theta } \right) + G_\varphi ^{(2)}\left( {r_0^\prime , \theta _0^\prime ;r, \theta } \right)} \right]{\rm{d}}r_0^\prime = - {\varphi ^{\rm{s}}} (20)

    积分方程式(19)~(20)为含弱奇异性的第一类Fredholm型积分方程,可以采用直接离散法进行求解。

    根据文献[10],在SH波作用下圆孔周边的环向剪切应力可以表示为:

    {\tau _{\theta z}} = \tau _{\theta z}^{\rm{Ⅰ}} + {\rm{i}}c_{44}^{\rm{Ⅰ}}\int_0^\infty {{f_1}} \left( {\eta _0^\prime } \right)\left( {\frac{{\partial G_w^{\rm{Ⅰ}}}}{{\partial \eta }}{{\rm{e}}^{{\rm{i}}\theta }} - \frac{{\partial G_w^{\rm{Ⅰ}}}}{{\partial \bar \eta }}{{\rm{e}}^{ - {\rm{i}}\theta }}} \right){\rm{d}}\left| {\eta _0^\prime } \right| + {\rm{i}}e_{15}^{\rm{Ⅰ}}\int_0^\infty {{f_3}} \left( {\eta _0^\prime } \right)\left( {\frac{{\partial G_\varphi ^{\rm{Ⅰ}}}}{{\partial \eta }}{{\rm{e}}^{{\rm{i}}\theta }} - \frac{{\partial G_\varphi ^{\rm{Ⅰ}}}}{{\partial \bar \eta }}{{\rm{e}}^{ - {\rm{i}}\theta }}} \right){\rm{d}}\left| {\eta _0^\prime } \right| (21)

    动应力集中系数τθz*(dynamic stress concentration factor, DSCF)可表示为:

    \tau _{\theta z}^* = \left| {{\tau _{\theta z}}/{\tau _0}} \right|, \quad {\tau _0} = {\rm{i}}{k_1}\left[ {c_{44}^{\rm{Ⅰ}} + {{\left( {e_{15}^{\rm{Ⅰ}}} \right)}^2}/\kappa _{11}^{\rm{Ⅰ}}} \right]{w_0} (22)

    根据文献[10],在SH波作用下圆孔周边电场强度可以表示为:

    {E_\theta } = E_\theta ^{\rm{Ⅰ}} - {\rm{i}}\int_0^\infty {{f_3}} \left( {\eta _0^\prime } \right)\left( {\frac{{\partial G_\varphi ^{\rm{Ⅰ}}}}{{\partial \eta }}{{\rm{e}}^{{\rm{i}}\theta }} - \frac{{\partial G_\varphi ^{\rm{Ⅰ}}}}{{\partial \bar \eta }}{{\rm{e}}^{ - {\rm{i}}\theta }}} \right){\rm{d}}\left| {\eta _0^\prime } \right|, \quad E_\theta ^{\rm{Ⅰ}}= - {\rm{i}}\left( {\frac{{\partial {\varphi ^{\rm{Ⅰ}}}}}{{\partial \eta }}{{\rm{e}}^{{\rm{i}}\theta }} - \frac{{\partial {\varphi ^{\rm{Ⅰ}}}}}{{\partial \bar \eta }}{{\rm{e}}^{ - {\rm{i}}\theta }}} \right) (23)

    由此可得,电场强度集中系数Eθ*(electric field intensity concentration factor, EFICF)的表达式为:

    E_\theta ^* = \frac{{{E_\theta }}}{{{E_0}}},\quad {E_0} = \frac{{{k_1}e_{15}^{\rm{Ⅰ}}{w_0}}}{{k_{11}^{\rm{Ⅰ}}}} (24)

    \lambda^{\mathit{\boldsymbol{Ⅰ}}}=\lambda^{\mathbb{Ⅱ}}=0, \quad c_{44}^{\mathit{\boldsymbol{Ⅰ}}}=c_{44}^{\mathbb{Ⅱ}}, k_{1}=k_{2}, \rho_{1}=\rho_{2}时,本文模型退化为含圆孔的半空间弹性介质。当参数取值与文献[12]相同时,该模型中动应力集中系数τθz*的分布情况如图 4(a)所示。对比可知,计算结果与文献[12]中结果吻合较好。当λ=λ=0,c44=0,k2=0,ρ2=0时,本文模型退化为含圆孔的直角域弹性介质。采用与文献[13]中相同的参数求解得到τθz*的分布情况,如图 4(b)所示。对比可知,计算结果与文献[13]中结果吻合较好。因此本文所采用的计算方法是可行的。以下令k1=k,构造量纲一参数k1*=k2/k1h*=h/ad*=d/a对计算模型进行分析,并设k1*=1,c44/c44=2,κ11/κ11c=1000,其中κ11c为圆孔内部空气的介电常数,a为圆孔半径。

    图  4  方法验证(与文献[12-13]比较)
    Figure  4.  Vertification of the present method (Compared to reference [12-13])

    图 5给出了低频SH波以不同角度入射时圆孔周边动应力集中系数的分布情况。图 5显示:SH波水平入射时,τθz*最大值分布在圆孔上、下两侧;垂直入射时,τθz*最大值分布在圆孔左、右两侧。当SH波垂直入射时,τθz*最大值为2(θ=0°),比水平入射时τθz*的最大值1.67(θ=73°)提高约19.7%,可见入射角度对τθz*存在影响。

    图  5  SH波水平入射时圆孔周边动应力集中系数随λ的分布
    Figure  5.  DSCF around circular cavity edge vs. λ by horizontal SH-wave

    图 6给出了SH波水平入射时圆孔周边动应力集中系数随参数ka的变化情况。由图 6可知:当ka=0.1时,τθz*的最大值为1.67(θ=73°);当ka=2时,τθz*最大值为2(θ=90°),提高了约19.7%。因此kaτθz*影响显著。综合图 5图 6结果可知,高频SH波垂直入射对τθz*的影响较大。

    图  6  SH波水平入射时圆孔周边动应力集中系数随参数ka的分布
    Figure  6.  DSCF around circular cavity edge vs. ka by horizontal SH-wave

    图 7给出了SH波水平入射时圆孔周边动应力集中系数随λ分布情况。由图 7可知:当λ=0.3时,τθz*最大值为1.2(θ=90°);当λ=1时,τθz*最大值为2(θ=90°),约为前者的1.6倍。

    图  7  SH波水平入射时圆孔周边动应力集中系数随λ的分布
    Figure  7.  DSCF around circular cavity edge vs. λ by horizontal SH-wave

    图 8给出了SH波水平入射时圆孔周边动应力集中系数随λ的变化情况。由图 8可知:当λ=1时,τθz*最大值为5.2(θ=17°);λ=0.3或0.5时,τθz*的分布基本一致,最大值为2(θ=90°),约为前者的38%。由此可见,λτθz*的影响比λ更显著。

    图  8  SH波水平入射时圆孔周边动应力集中系数随λ的分布
    Figure  8.  DSCF around circular cavity edge vs. λ by horizontal SH-wave

    图 9给出了SH波水平入射时圆孔θ=-π处动应力集中系数随ka的变化情况。由图 9可知:τθz*ka增大振荡变化;当0≤ka < 1.1时,λ=0.3对应的τθz*比较大;当1.1≤ka < 2时,λ=1对应的τθz*较大;当λ=1、ka=1.9时,τθz*达到最大值,约为2.46。由此可见,当参数ka相同时,λτθz*的分布存在影响。

    图  9  SH波水平入射时圆孔周边应力集中系数随参数ka的变化
    Figure  9.  DSCF around circular cavity edge vs. ka by horizontal SH-wave

    图 10给出了SH波以不同角度入射时圆孔周边电场强度系数的分布情况。由图 10可知:SH波水平入射时,Eθ*最大值分布在圆孔上下两侧;垂直入射时,Eθ*最大值分布在圆孔左右两侧,与图 5τθz*的分布趋势一致。SH波水平入射时,Eθ*的最大值为0.81(θ=-108°);垂直入射时,Eθ*的最大值为2(θ=0°),约为前者的2.4倍。由此可见,入射角度对Eθ*存在影响。

    图  10  SH波以不同角度入射时圆孔周边电场强度集中系数的分布
    Figure  10.  EFICF around circular cavity edge by SH-wave with different incident angles

    图 11给出了SH波水平入射时圆孔周边电场强度系数随参数ka的变化情况。由图 11可知,kaEθ*影响显著。当ka=0.1时,Eθ*最大值为0.81(θ=-108°);当ka=2时,Eθ*最大值为2(θ=90°),约为前者的2.4倍。综合图 10图 11结果可知,高频SH波垂直入射对Eθ*影响较大。

    图  11  SH波水平入射时圆孔周边电场强度集中系数随参数ka的分布
    Figure  11.  EFICF around circular cavity edge vs.ka by horizontal SH-wave

    图 12给出了θ=-π处SH波水平入射时电场强度系数随ka的变化情况。由图 12可知:Eθ*随着ka的增大振荡变化;当0≤ka < 1.7时,λ=0.3对应的Eθ*较大;当1.7≤ka < 2时,λ=1对应的Eθ*较大;当ka=1.9、λ=1时,Eθ*达到最大值,约为2.95。由此可见,在参数ka相同的情况下,λEθ*的分布存在一定的影响。

    图  12  SH波水平入射时电场强度集中系数随参数ka的分布
    Figure  12.  Variation of EFICF around circular cavity edge vs.ka by horizontal SH-wave

    利用Green函数法、“镜像法”和“契合法”对半空间双压电介质垂直边界附近圆孔对SH波的散射进行分析研究。计算结果表明:入射角度、入射波频率、量纲一压电参数对圆孔周边的动应力强度系数与电场强度集中系数存在影响,且高频SH波垂直入射对压电材料的危害较大;随着入射波频率的增加,圆孔周边θ=-π处的动应力集中系数与电场强度集中系数均随着ka的增大而振荡变化。该结果为压电元件的设计制造及工程应用提供有益的参考

  • 图  1  含圆孔的半空间双相压电介质模型

    Figure  1.  Model of a piezoelectric bi-material in half space with a circular cavity

    图  2  受线源荷载作用的直角域模型

    Figure  2.  Right-angle plane model impacted by a line source force

    图  3  含圆孔的半空间双相压电介质垂直界面的契合

    Figure  3.  Conjunction of piezoelectric bi-material vertical interface in half space with a circular cavity

    图  4  方法验证(与文献[12-13]比较)

    Figure  4.  Vertification of the present method (Compared to reference [12-13])

    图  5  SH波水平入射时圆孔周边动应力集中系数随λ的分布

    Figure  5.  DSCF around circular cavity edge vs. λ by horizontal SH-wave

    图  6  SH波水平入射时圆孔周边动应力集中系数随参数ka的分布

    Figure  6.  DSCF around circular cavity edge vs. ka by horizontal SH-wave

    图  7  SH波水平入射时圆孔周边动应力集中系数随λ的分布

    Figure  7.  DSCF around circular cavity edge vs. λ by horizontal SH-wave

    图  8  SH波水平入射时圆孔周边动应力集中系数随λ的分布

    Figure  8.  DSCF around circular cavity edge vs. λ by horizontal SH-wave

    图  9  SH波水平入射时圆孔周边应力集中系数随参数ka的变化

    Figure  9.  DSCF around circular cavity edge vs. ka by horizontal SH-wave

    图  10  SH波以不同角度入射时圆孔周边电场强度集中系数的分布

    Figure  10.  EFICF around circular cavity edge by SH-wave with different incident angles

    图  11  SH波水平入射时圆孔周边电场强度集中系数随参数ka的分布

    Figure  11.  EFICF around circular cavity edge vs.ka by horizontal SH-wave

    图  12  SH波水平入射时电场强度集中系数随参数ka的分布

    Figure  12.  Variation of EFICF around circular cavity edge vs.ka by horizontal SH-wave

  • [1] 舒小平.正交压电复合材料层板各类边界的解析解[J].工程力学, 2013, 30(10):288-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201310041

    Shu Xiaoping. Analytical solutions of cross-ply piezoelectric composite laminates with various boundary conditions[J]. Engineering Mechanics, 2013, 30(10):288-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201310041
    [2] 王永健, 宋豪鹏, 高存法, 等.双压电材料内含椭圆孔孔边界面裂纹的反平面问题[J].力学季刊, 2015(3):416-426. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjk201503007

    Wang Yongjian, Song haopeng, Gao Cunfa, et al. The anti-plane problem for a cracked elliptical hole at the interface of bi-materials[J]. Chinese Quarterly of Mechanics, 2015(3):416-426. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjk201503007
    [3] Gao C F, Fan W X. Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack[J]. International Journal of Solids and Structures, 1999, 36(17):2527-2540. doi: 10.1016/S0020-7683(98)00120-6
    [4] Lee K L, Soh A K, Fang D N, et al. Fracture behavior of inclined elliptical cavities subjected to mixed-mode Ⅰ and Ⅱ electro-mechanical loading[J]. Theoretical and Applied Fracture Mechanics, 2004, 41(1-3):125-135. doi: 10.1016/j.tafmec.2003.11.010
    [5] Du J K, Shen Y P, Wang X. Scattering of anti-plane shear waves by a partially debonded piezoelectric circular cylindrical inclusion[J]. Acta Mechanica, 2002, 158(3):169-183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84ae9cbc3f427178352fa8e2957c88f4
    [6] Feng W J, Wang L Q, Jiang Z Q, et al. Shear wave scattering from a partially debonded piezoelectric cylindrical inclusion[J]. Acta Mechanica Solida Sinica, 2004, 17(3):258-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a6e2fdd418c87181735461ec7a1ee7e
    [7] 宋天舒, 刘殿魁, 于新华.SH波在压电材料中的散射和动应力集中[J].哈尔滨工程大学学报, 2002, 23(1):120-123. doi: 10.3969/j.issn.1006-7043.2002.01.025

    Song Tianshu, Liu Diankui, Yu Xinhua. Scattering of SH-Wave and dynamic stress concentration in a piezoelectric medium with a circular hole[J]. Journal of Harbin Engineering University, 2002, 23(1):120-123. doi: 10.3969/j.issn.1006-7043.2002.01.025
    [8] 宋天舒, 刘殿魁, 付国庆.含刚性圆柱夹杂压电介质的动力反平面特性[J].哈尔滨工程大学学报, 2003, 24(5):574-577. doi: 10.3969/j.issn.1006-7043.2003.05.025

    Song Tianshu, Liu Diankui, Fu Guoqing. Dynamic anti-plane characteristic of piezoelectric medium with rigid cylindrical inclusion[J]. Journal of Harbin Engineering University, 2003, 24(5):574-577. doi: 10.3969/j.issn.1006-7043.2003.05.025
    [9] Hassan A, Song T S. Dynamic anti-plane analysis for two symmetrically interfacial cracks near circular cavity in piezoelectric bi-materials[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(10):1261-1270. doi: 10.1007/s10483-014-1891-9
    [10] 李冬, 宋天舒.双相压电介质中界面附近圆孔的动态性能分析[J].振动与冲击, 2011, 30(3):91-95. doi: 10.3969/j.issn.1000-3835.2011.03.019

    Li Dong, Song Tianshu. Dynamic performance analysis of circular cavity near interface in piezoelectric bimaterials[J]. Journal of Vibration and Shock, 2011, 30(3):91-95. doi: 10.3969/j.issn.1000-3835.2011.03.019
    [11] Wang X D. On the dynamic behaviour of interacting interfacial cracks in piezoelectric media[J]. International Journal of Solids and Structures, 2001, 38(5):815-831. doi: 10.1016/S0020-7683(00)00044-5
    [12] 林宏, 刘殿魁.半无限空间中圆形孔洞周围SH波的散射[J].地震工程与工程振动, 2002, 22(2):9-16. doi: 10.3969/j.issn.1000-1301.2002.02.002

    Lin Hong, Liu Diankui. Scattering of SH-wave around a circular cavity in half space[J]. Journal of Earthquake Engineering and Engineering Vibration, 2002, 22(2):9-16. doi: 10.3969/j.issn.1000-1301.2002.02.002
    [13] 折勇, 齐辉, 杨在林.SH波对直角平面区域内圆形孔洞的散射与地震动[J].应用力学学报, 2008, 35(3):392-397. http://d.old.wanfangdata.com.cn/Periodical/yylxxb200803009

    Shi Yong, Qi Hui, Yang Zailin. Scattering of SH-wave by circular cavity in right-angle plane and seismic ground motion[J]. Chinese Journal of Solid Mechanics, 2008, 35(3):392-397. http://d.old.wanfangdata.com.cn/Periodical/yylxxb200803009
  • 期刊类型引用(3)

    1. 屈恩相,张景颢,王伟业,胡兴森,王浩宁,徐静怡,李聪. 镜像法求解SH波散射问题的应用综述. 安徽建筑. 2024(07): 115-117 . 百度学术
    2. 齐辉,张洋,陈洪英. 含有脱胶的椭圆夹杂及圆夹杂对SH波的散射. 哈尔滨工程大学学报. 2019(08): 1433-1439 . 百度学术
    3. 齐辉,陈洪英,张希萌,赵元博,项梦. 半空间内含有部分脱胶的椭圆夹杂及圆孔对SH波的散射. 爆炸与冲击. 2018(06): 1344-1352 . 本站查看

    其他类型引用(3)

  • 加载中
图(12)
计量
  • 文章访问数:  4689
  • HTML全文浏览量:  1194
  • PDF下载量:  355
  • 被引次数: 6
出版历程
  • 收稿日期:  2015-11-24
  • 修回日期:  2016-06-27
  • 刊出日期:  2017-07-25

目录

/

返回文章
返回