基于复合面/背板的平板装药防护性能

李如江 柴艳军 韩宏伟 刘天生

李如江, 柴艳军, 韩宏伟, 刘天生. 基于复合面/背板的平板装药防护性能[J]. 爆炸与冲击, 2017, 37(4): 637-642. doi: 10.11883/1001-1455(2017)04-0637-06
引用本文: 李如江, 柴艳军, 韩宏伟, 刘天生. 基于复合面/背板的平板装药防护性能[J]. 爆炸与冲击, 2017, 37(4): 637-642. doi: 10.11883/1001-1455(2017)04-0637-06
Li Rujiang, Chai Yanjun, Han Hongwei, Liu Tiansheng. Protective performance of explosive reactive armor with composite rubber armor as front or back plate[J]. Explosion And Shock Waves, 2017, 37(4): 637-642. doi: 10.11883/1001-1455(2017)04-0637-06
Citation: Li Rujiang, Chai Yanjun, Han Hongwei, Liu Tiansheng. Protective performance of explosive reactive armor with composite rubber armor as front or back plate[J]. Explosion And Shock Waves, 2017, 37(4): 637-642. doi: 10.11883/1001-1455(2017)04-0637-06

基于复合面/背板的平板装药防护性能

doi: 10.11883/1001-1455(2017)04-0637-06
详细信息
    作者简介:

    李如江(1978-),男,博士,副教授,lirujiang3002@sina.com

  • 中图分类号: O385

Protective performance of explosive reactive armor with composite rubber armor as front or back plate

  • 摘要: 采用实验和数值模拟方法研究了橡胶复合板作为爆炸反应装甲面、背板时的防护性能,分析了两种反应装甲结构的防护机理,并与面密度相同的钢反应装甲进行了对比。实验结果表明:爆炸反应装甲面板或背板为橡胶复合板时的防护性能优于钢反应装甲,其中橡胶复合板作为背板时效果最优。数值模拟结果表明:橡胶复合板在爆炸驱动下外层钢板速度相比于钢反应装甲飞板提高16%,橡胶复合板的界面效应及其飞板间隙可以有效减小逃逸射流的长度。
  • 图  1  3种反应装甲结构

    Figure  1.  Three ERA structures

    图  2  聚能装药对反应装甲作用的实验布置示意图

    Figure  2.  Experimental scheme of shaped charge and ERA

    图  3  典型时刻的X射线实验照片

    Figure  3.  X-ray photographs at t = 46 μs

    图  4  后效靶穿深实验结果照片

    Figure  4.  Experimenal pictures of DOP results

    图  5  射流与3种结构的反应装甲在典型时刻的作用形态

    Figure  5.  Results of interaction between jet and three structures of ERA at different times

    图  6  飞板速度计算结果

    Figure  6.  Calculated plate velocities

    表  1  实验结果

    Table  1.   Experimental results of penetration

    装甲结构 开坑尺寸/(mm×mm) 开坑深度/mm
    结构(a) 7×11 9
    结构(b) 6×11 11
    结构(c) 6×7 6
    下载: 导出CSV

    表  2  炸药计算参数

    Table  2.   Computational parameters for JH-2 and Comp.B

    炸药 ρ/(g·cm-3) D/(m·s-1) A/GPa B/GPa R1 R2 ω
    JH-2 1.685 8 130 625.3 23.29 5.25 1.6 0.28
    Comp. B 1.715 7 980 524.2 7.77 4.2 1.1 0.50
    下载: 导出CSV

    表  3  Lee-Tarver反应模型参数

    Table  3.   Computational parameters for Lee-Tarver model

    I/s-1 b a x G1/GPa c d y G2/GPa e g z
    4.4×1017 0.667 0 20 310 0.667 0.111 1.0 400 0.333 1.0 2.0
    下载: 导出CSV

    表  4  紫铜和Q235钢材料的本构方程计算参数

    Table  4.   Computational parameters for copper and Q235 steel

    材料 ρ/(g·cm-3) A1/GPa B1/GPa n C1 m c0/(km·s-1) s Γ0
    Q235 7.85 0.792 0.51 0.26 0.014 1.03 4.57 1.33 1.67
    Cu 8.96 0.090 0.29 0.31 0.025 1.09 3.94 1.49 1.99
    下载: 导出CSV

    表  5  橡胶夹层和聚能壳体材料参数

    Table  5.   Computational parameters for rubber interlayer and polymer shell

    材料 ρ/(g·cm-3) c0/(m·s-1) s Γ0 σb/MPa ε/%
    橡胶 1.01 852 1.865 1.5 20 400
    Teflon 2.15 1 680 1.82 0.59 30 450
    下载: 导出CSV
  • [1] 黄正祥.聚能装药理论与实践[M].北京:北京理工大学出版社, 2014.

    Huang Zhengxiang. Theory and practice of shaped charge[M]. Beijing: Beijing Institute of Technology Press, 2014.
    [2] Thoma K, Vinckier D, Kiermeir J, et al. Shaped charge jet interaction with highly effective passive sandwich systems-experiments and analysis[J]. Propellants, Explosives, Pyrotechnics, 1993, 18(5):275-281. doi: 10.1002/(ISSN)1521-4087
    [3] Mayseless M, Marmor E, Gov N S, et al. Interaction of a shaped charge jet with reactive or passive cassettes[C]//14th International Symposium on Ballistics. Quebec, Canada, 1993: 439-448.
    [4] 赵慧英, 沈兆武, 刘天生.反应装甲与陶瓷复合装甲集成技术研究探讨[J].爆炸与冲击, 2006, 26(1):21-26. doi: 10.3321/j.issn:1001-1455.2006.01.004

    Zhao Huiying, Shen Zhaowu, Liu Tiansheng. On the integrated technology of reactive armors with composite ceramic armors[J]. Explosion and Shock Waves, 2006, 26(1):21-26. doi: 10.3321/j.issn:1001-1455.2006.01.004
    [5] Lee H J, Choi J H, Lee C H, et al. The effective analysis of backup plates of explosive reactive armor[C]//28th International Symposium on Ballistics. Atlanta, GA, 2014: 988-995.
    [6] Friling S, Benyami M, Yaziv D. The interaction O shaped charge jets with combined reactive-inert cassettes[C]//14th International Symposium on Ballistics. Quebec, Canada, 1993: 227-235.
    [7] Jia X, Huang Z X, Zu X D, et al. Theoretical analysis of the disturbance of shaped charge jet penetrating a woven fabric rubber composite armor[J]. International Journal of Impact Engineering, 2014, 65(2):69-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0968760788eb642191a0beed33c7c985
    [8] Jia X, Huang Z X, Zu X D, et al. Experimental study on the performance of woven fabric rubber composite armor subjected to shaped charge jet impact[J]. International Journal of Impact Engineering, 2013, 57(7):134-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31af7c6a6a07030ba6e67601044666a4
    [9] Zu X, Huang Z, Jia X. Study on rubber composite armor anti-shaped charge jet penetration[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(5):695-702. doi: 10.1002/prep.v38.5
    [10] Lee E L, Tarver C M. Phenomenological model of shock initiation in heterogeneous explosives[J]. Physics of Fluids, 1980, 23(12):2362-2372. doi: 10.1063/1.862940
    [11] Li X D, Yang Y S, Lü S T. A numerical study on the disturbance of explosive reactive armors to jet penetration[J]. Defence Technology, 2014, 10(1):66-75. doi: 10.1016/j.dt.2014.01.006
    [12] Livermore Software Technology Corporation. LS-DYNA Keyword User's Manual[DB]. California: Livermore Software Technology Corporation, 2001.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  4205
  • HTML全文浏览量:  1361
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-21
  • 修回日期:  2016-06-02
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回