Antiknock performance of an overflow dam subjected to contact explosion
-
摘要: 以黄登重力坝的溢流坝为研究背景,考虑混凝土的高应变率效应,运用Lagrange-Euler耦合算法建立大坝-库水-空气-炸药全耦合数值模型,研究溢流坝在接触爆炸荷载作用下的抗爆性能。分析满库与空库时溢流坝在爆炸冲击波作用下的动力响应及损伤程度,并进一步研究满库时大坝在不同炸点的水下接触爆炸荷载作用下的动力响应及损伤分布。研究结果表明,满库时水下爆炸比空库时爆炸的动力响应及损伤程度大得多;溢流坝的抗爆薄弱部位主要集中在溢流道顶部及坝体上游折坡处。研究溢流坝的抗爆性能时应重点研究满库时水下爆炸对大坝的破坏特性。Abstract: In this paper, against the background of the Huangdeng gravity dam and in consideration of the influence of the concrete's high strain rate, we established a fully-coupled numerical model for the dam-water-air-explosive using the Lagrange-Euler coupling method, and studied the antiknock performance of the overflow dam subjected to contact explosion loading. The dynamic response and damage of the overflow dam under the condition of withholding a full reservoir of water were compared with that under the condition of withholding an empty reservoir. Further, the response of the overflow dam subjected to underwater explosion at different explosion points was also investigated. The results show that, subjected to the same underwater explosion, the dynamic response and damage degree of the overflow dam withholding a full reservoir were significantly higher than those of the dam withholding an empty reservoir, and the weak points of the overflow dam were mainly located at the dam's overflow spillway on the top and the upstream slope. Therefore, it is concluded that research on the antiknock performance of an overflow dam subjected to underwater contact explosion should focus on the damage characteristics of the dam withholding a full reservoir.
-
Key words:
- overflow dam /
- contact explosion /
- dynamic response /
- damage /
- antiknock performance
-
区别于一般的爆炸力学和冲击动力学计算,毁伤仿真计算往往需要对完整目标场景甚至阵地场景进行武器打击全过程计算,同时又需要近实时给出计算结果。这种大场景和快速计算在武器研发和运用的工程实际中有着强烈的应用需求。现有爆炸和冲击动力学计算方法(如FEM)由于计算规模和计算效率的限制,在进行毁伤场景计算时往往只能对目标构件或者局部区域进行计算,很难满足毁伤仿真的应用需求。近年来出现了一些快速算法,如镜像爆源法、侵彻微分面元法和破片射线追踪法等,这些快速算法充分利用解析公式、经验数据或代理模型,结合计算机仿真与可视化技术,形成实用工具,有力支撑了国防工业和军事领域的应用。
毁伤快速算法的求解时间必须满足强制时间约束条件,在优先满足时间效率要求的前提下,综合采用解析公式、经验数据、数值计算、人工智能、计算机仿真等方法,进行算法创新和集成应用。毁伤快速算法是一种既区别于解析公式法,又区别于传统有限元的求解方法,既有解析公式稳健可靠的特性,又有有限元方法良好的复杂几何形状适用性,填补了解析公式和有限元方法之间巨大的方法空白。这类方法能够抓住毁伤的主要特征进行快速求解,其特点主要包括:复杂三维场景适用,时间差分推进,数据驱动为主、模型驱动为辅,“绝对的时效性、相对的准确性”,物理毁伤、功能毁伤和任务毁伤的一体化计算等。毁伤仿真是一个典型的多学科交叉、多技术融合的领域,尤其对于计算机图形学等计算机仿真学科和相关技术有很强的依赖性,典型例子就是射线追踪法(ray tracing)在破片场求解中的应用。此外,在实际应用中,对于软件友好操作、三维可视化等功能也有很强的技术需求,可以说毁伤快速算法和计算机仿真技术构成了深度耦合的关系。
根据工作需要,我国不少科研单位开展了一些相关基础研究,并形成了相应的研究成果,但是针对这一领域进行系统学术交流的平台一直缺乏。为了推动毁伤快速算法和仿真技术领域的科学发展,促进此类方法在国防安全领域的运用,2023年7月,在中国力学学会爆炸力学分会计算爆炸力学专业组的指导下,国防科技大学理学院和湖南大学土木工程学院联合承办了2023年毁伤快速算法与仿真技术研讨会,旨在探讨毁伤快速算法和仿真技术的关键技术和发展方向。我国本领域专家学者积极参会和投稿,贡献出了精彩的学术报告和高质量的学术论文,会议规模远超组委会的预期。经过《爆炸与冲击》期刊的严格审稿流程,多篇文章有幸获得发表,形成本期专题。会议组委会由衷感谢全部参会人员、论文作者和审稿专家,特别感谢《爆炸与冲击》编辑部为本专题出版做出的贡献!
国防科技大学 卢芳云 教授
-
表 1 修正的RHT本构模型参数
Table 1. Modified parameters of RHT constitutive model
A N pspall* Q0 BQ B M εminf σPTF/MPa 1.92 0.76 0.1 0.69 0.004 8 0.7 0.8 0.001 5 -
[1] 丁阳, 方磊, 李忠献, 等.防恐建筑结构抗爆防护分类设防标准研究[J].建筑结构学报, 2013, 34(4):57-64. http://d.old.wanfangdata.com.cn/Periodical/zhzyfdc201633065Ding Yang, Fang Lei, Li Zhongxian, et al. Research on categorized explosion protection criterion of anti-terrorism building structures[J]. Journal of Building Structures, 2013, 34(4):57-64. http://d.old.wanfangdata.com.cn/Periodical/zhzyfdc201633065 [2] Georgin J F, Reynouard J M. Modeling of structures subjected to impact: Concrete behaviour under high strain rate[J]. Cement and Concrete Composites, 2003, 25(1):131-143. doi: 10.1016/S0958-9465(01)00060-9 [3] Zhang Q, Lin D C, Bai C H, et al. Correlations of blast damage to ground surface targets with explosion seismic effect[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(7):519-525. doi: 10.1016/j.soildyn.2004.03.003 [4] Zhao C F, Chen J Y. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading[J]. Theoretical and Applied Fracture Mechanics, 2013, 63/64(1):54-62. https://www.sciencedirect.com/science/article/pii/S0167844213000372 [5] Zhao C F, Chen J Y, Wang Y, et al. Damage mechanism and response of reinforced concrete containment structure under internal blast loading[J]. Theoretical and Applied Fracture Mechanics, 2012, 61(1):12-20. https://www.sciencedirect.com/science/article/pii/S0167844212000638 [6] 李鸿波, 张爱华, 陈云敏.爆炸冲击荷载作用下重力坝三维各向异性脆性动力损伤有限元分析[J].岩石力学与工程学报, 2006, 25(8):1598-1605. doi: 10.3321/j.issn:1000-6915.2006.08.012Li Hongbo, Zhang Aihua, Chen Yunmin. 3d finite element analysis of anisotropic brittle dynamic damage in gravity dam under blast-impact load[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(8):1598-1605. doi: 10.3321/j.issn:1000-6915.2006.08.012 [7] 薛新华, 李鹏.爆炸荷载作用下拱坝动力响应分析[J].水利学报, 2015, 46(增刊1):107-110. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201507001426.htmXue Xinhua, Li Peng. Dynamic response analysis of arch dam under blast load[J]. Journal of Hydraulic Engineering, 2015, 46(Suppl 1);107-110. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201507001426.htm [8] 徐俊祥, 刘西拉.水中爆炸冲击下混凝土坝动力响应的全耦合分析[J].上海交通大学学报, 2008, 42(6):1001-1004. doi: 10.3321/j.issn:1006-2467.2008.06.032Xu Junxiang, Liu Xila. Full coupled simulation of concrete dams subjected to underwater explosion[J]. Journal of Shanghai Jiaotong University, 2008, 42(6):1001-1004. doi: 10.3321/j.issn:1006-2467.2008.06.032 [9] Yu T T. Dynamical response simulation of concrete dam subjected to underwater contact explosion load[C]//2009 WRI World Congress on Computer Science and Information Engineering. Los Angeles, California, 2009: 769-774. [10] 张社荣, 王高辉.混凝土重力坝抗爆性能及抗爆措施研究[J].水利学报, 2012, 43(10):1202-1213. http://cdmd.cnki.com.cn/Article/CDMD-10056-1015039423.htmZhang Sherong, Wang Gaohui. Study on the antiknock performance and measures of concrete gravity dam[J]. Journal of Hydraulic Engineering, 2012, 43(10):1202-1213. http://cdmd.cnki.com.cn/Article/CDMD-10056-1015039423.htm [11] 张社荣, 王高辉.浅水爆炸冲击荷载下高拱坝抗爆性能分析[J].天津大学学报, 2013, 46(4):315-321. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201304005Zhang Sherong, Wang Gaohui. Antiknock performance of high arch dam subjected to shallow water explosion[J]. Journal of Tianjin University, 2013, 46(4):315-321. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201304005 [12] Zhang S R, Wang G H, Yu X R. Seismic cracking analysis of concrete gravity dams with initial cracks using the extended finite element method[J]. Engineering Structures, 2013, 56(6):528-543. https://www.sciencedirect.com/science/article/pii/S0141029613002605 [13] 张社荣, 孔源, 王高辉, 等.混凝土重力坝水下接触爆炸下的毁伤特性分析[J].水利学报, 2014, 45(9):1057-1065. http://d.old.wanfangdata.com.cn/Periodical/slxb201409006Zhang Shenrong, Kong Yuan, Wang Gaohui, et al. Damage characteristic analysis of concrete gravity dams subjected to underwater contact explosion[J]. Journal of Hydraulic Engineering, 2014, 45(9):1057-1065. http://d.old.wanfangdata.com.cn/Periodical/slxb201409006 [14] 李本平.制导炸弹连续打击下混凝土重力坝的破坏效应[J].爆炸与冲击, 2010, 30(2):220-224. doi: 10.11883/1001-1455(2010)02-0220-05Li Benping. Damage effect of a concrete gravity dam under continuous attacks of guided bombs[J]. Explosion and Shock Waves, 2010, 30(2):220-224. doi: 10.11883/1001-1455(2010)02-0220-05 [15] 张社荣, 杨明, 王高辉.水下爆炸冲击下重力拱坝的破坏特性[J].水电能源科学, 2014, 32(7):69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201407017.htmZhang Sherong, Yang ming, Wang Gaohui. Failure characteristics of gravity arch dam subjected to underwater explosion[J]. Water Resources and Power, 2014, 32(7):69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201407017.htm [16] 陆路, 李昕, 周晶.水下核爆作用下混凝土重力坝模型破坏试验[J].大连理工大学学报, 2011, 51(6):854-860. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013198498.htmLu Lu, Li Xin, Zhou Jing. Destructive tests of concrete gravity dam underwater nuclear explosion[J]. Journal of Dalian University of Technology, 2011, 51(6):854-860. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013198498.htm [17] Malvar L J, Ross C A. A review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6):735-739. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=418 [18] Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates[J]. Materials and Structures, 1991, 24(6):425-450. doi: 10.1007/BF02472016 [19] Wang W, Zhang D, Lu F, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading[J]. International Journal of Impact Engineering, 2012, 49(2):158-164. https://www.sciencedirect.com/science/article/pii/S0734743X12000759 [20] 匡志平, 袁训康.RHT混凝土本构模型强度参数分析与模拟[J].力学季刊, 2012, 33(1):158-163. doi: 10.3969/j.issn.0254-0053.2012.01.023Kuang Zhiping, Yuan Xunkang. The analysis and simulation for the strength parameters[J]. Chinese Quarterly of Mechanics, 2012, 33(1):158-163. doi: 10.3969/j.issn.0254-0053.2012.01.023 [21] Tu Z G, Lu Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations[J]. International Journal of Impact Engineering, 2009, 36(1):132-146. doi: 10.1016/j.ijimpeng.2007.12.010 [22] Shin Y S, Chisum J E. Modeling and simulation of underwater shock problems using a coupled Lagrangian-Eulerian analysis approach[J]. Shock and Vibration, 1997, 4(1):1-10. [23] Mair H U. Hydrocodes for structural response to underwater explosions[J]. Shock and Vibration, 1999, 6(2):81. doi: 10.1155/1999/587105 [24] Van der Veen W A. Simulation of a compartmented airbag deployment using an explicit, coupled Euler/Lagrange method with adaptive Euler domains[A]. NAFEMS, Florida, 2003. [25] Mair H U. Hydrocode methodologies for underwater explosion structure/medium interaction[C]//Proceeding of the 66th Shock and Vibration Symposium. Virginia, 1995, 2: 227-248. -