含氦泡金属铝层裂响应的数值分析

张凤国 胡晓棉 王裴 邵建立 周洪强 冯其京

张凤国, 胡晓棉, 王裴, 邵建立, 周洪强, 冯其京. 含氦泡金属铝层裂响应的数值分析[J]. 爆炸与冲击, 2017, 37(4): 699-704. doi: 10.11883/1001-1455(2017)04-0699-06
引用本文: 张凤国, 胡晓棉, 王裴, 邵建立, 周洪强, 冯其京. 含氦泡金属铝层裂响应的数值分析[J]. 爆炸与冲击, 2017, 37(4): 699-704. doi: 10.11883/1001-1455(2017)04-0699-06
Zhang Fengguo, Hu Xiaomian, Wang Pei, Shao Jianli, Zhou Hongqiang, Feng Qijing. Numerical analysis of spall response in aluminum with helium bubbles[J]. Explosion And Shock Waves, 2017, 37(4): 699-704. doi: 10.11883/1001-1455(2017)04-0699-06
Citation: Zhang Fengguo, Hu Xiaomian, Wang Pei, Shao Jianli, Zhou Hongqiang, Feng Qijing. Numerical analysis of spall response in aluminum with helium bubbles[J]. Explosion And Shock Waves, 2017, 37(4): 699-704. doi: 10.11883/1001-1455(2017)04-0699-06

含氦泡金属铝层裂响应的数值分析

doi: 10.11883/1001-1455(2017)04-0699-06
基金项目: 

国家自然科学基金项目 U1530261

国家自然科学基金项目 11372052

国家自然科学基金项目 11572054

详细信息
    作者简介:

    张凤国(1969-),男,研究员,zhang_fengguo@iapcm.ac.cn

  • 中图分类号: O346.1

Numerical analysis of spall response in aluminum with helium bubbles

  • 摘要: 因自辐照效应的影响,一些材料内部会产生大量的氦泡,关注这些氦泡对材料力学性能的影响是目前损伤破坏研究中的重要问题之一。结合相关文献的实验结果,采用耦合材料初始损伤、孔洞尺寸及惯性影响的损伤模型,对该问题进行了数值分析。结果显示:氦泡的内压及材料变形中温度的变化对损伤发展的影响很小;材料的初始损伤越大,材料内部应力减小得越快,损伤增长得越慢;因惯性的影响,初始氦泡越大,损伤增长相对较慢。因此,分析含氦泡材料的层裂损伤问题需要重点关注材料初始氦泡大小、初始损伤以及损伤演化过程中惯性的影响。
  • 图  1  自由面速度的实验结果和数值计算结果

    Figure  1.  Experimental and calculated free surface velocity

    图  2  氦泡内压随氦泡半径的变化

    Figure  2.  Pressure in helium bubble vs. radius of helium bubble

    图  3  氦泡温度对自由面速度的影响

    Figure  3.  Effect of temperature in helium bubble on the free surface velocity

    图  4  氦泡内压对自由面速度的影响

    Figure  4.  Effect of initial pressure in helium bubble on the free surface velocity

    图  5  不同初始损伤对自由面速度的影响

    Figure  5.  Influence of initial damage on the free surface velocity

    图  6  不同初始损伤对氦泡半径的影响

    Figure  6.  Influence of initial damage on the radius of helium bubble

    图  7  不同初始氦泡尺寸对自由面速度的影响

    Figure  7.  Influence of initial helium bubble size on the free surface velocity

    图  8  不同初始氦泡尺寸对损伤度的影响

    Figure  8.  Influence of initial helium bubble size on the porosity

    图  9  惯性对自由面速度的影响

    Figure  9.  Effect of inertia on the free surface velocity

  • [1] Chen X, Asay J R, Dwivedi S K, et al. Spall behavior of aluminum with varying microstructures[J]. Journal of Applied Physics, 2006, 99(2):023528. doi: 10.1063/1.2165409
    [2] Trivedi P B, Asay J R, Gupta Y M, et al. Influence of grain size on the tensile response of aluminum under plate-impact loading[J]. Journal of Applied Physics, 2007, 102(8):083513. doi: 10.1063/1.2798497
    [3] Escobedo J P, Dennis-Koller D, Cerreta E K, et al. Grain size and boundary structure on the dynamic tensile response of copper[J]. Journal of Applied Physics, 2011, 110(3):033513. doi: 10.1063/1.3607294
    [4] 张凤国, 周洪强.晶粒尺度对延性金属材料层裂损伤的影响[J].物理学报, 2013, 62(16):164601. doi: 10.7498/aps.62.164601

    Zhang Fengguo, Zhou Hongqiang. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metall[J]. Acta Physica Sinica, 2013, 62(16):164601. doi: 10.7498/aps.62.164601
    [5] Trinkaus H, Singh B N. Helium accumulation in metals during irradiation-where do we stand?[J].Journal of Nuclear Materials, 2003, 323(2/3):229-242. http://www.sciencedirect.com/science/article/pii/S0022311503004033
    [6] Marian J, Wirth B D, Perlado M. Mechanism of formation and growth of 〈100〉 interstitial loops in ferritic materials[J]. Physics Review Letters, 2002, 88(25):255507. doi: 10.1103/PhysRevLett.88.255507
    [7] Moreno D, Eliezer D. Structural changes in a copper alloy due to helium implantation[J]. Scripta Materialia, 1996, 35(12):1385-1389. doi: 10.1016/S1359-6462(96)00314-4
    [8] Singh B N, Leffers T. Implications of the variation in microstructure caused by changes in helium generation rate and other irradiation parameters[J]. Radiation Effects and Defects in Solids, 1987, 101(1):73-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00337578708224737
    [9] Kubota A, Reisman D B, Wolfer W G. Dynamic strength of metals in shock deformation[J]. Applied Physics Letters, 2006, 88(24):241924. doi: 10.1063/1.2210799
    [10] Glam B, Eliezer S, Moreno D, et al. Dynamic fracture and spall in aluminum with helium bubbles[J]. International Journal of Fracture, 2010, 163(1/2):217-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce303b4124937f5f94fc151f79eb1df1
    [11] Glam B, Strauss M, Eliezer S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: Experiments and simulations[J]. International Journal of Impact Engineering, 2014, 65(4):1-12. http://www.sciencedirect.com/science/article/pii/S0734743X13002030
    [12] Tonks D L, Zurek A K, Thissell W R. Coalescence rate model for ductile damage in metals[J]. Journal de Physique Ⅳ, 2003, 110(9):893-898.
    [13] 彭辉, 李平, 裴晓阳, 等.动态损伤演化的空间不连续性实验研究[J].物理学报, 2013, 62(22):226201. doi: 10.7498/aps.62.226201

    Peng Hui, Li Ping, Pei Xiaoyang, et al. Experimental study of the spatial discontinuity of dynamic damage evolution[J]. Acta Physica Sinica, 2013, 62(22):226201. doi: 10.7498/aps.62.226201
    [14] Zhang F G, Zhou H Q, Hu J, et al. Modelling of spall damage in ductile materials and its application to the simulation of the plate impact on copper[J]. Chinese Physics B, 2012, 21(9):094601. doi: 10.1088/1674-1056/21/9/094601
    [15] 张凤国, 周洪强, 张广财, 等.惯性及弹塑性效应对延性金属材料层裂损伤的影响[J].物理学报, 2011, 60(7):074601. http://d.old.wanfangdata.com.cn/Periodical/wlxb201107066

    Zhang Fengguo, Zhou Hongqiang, Zhang Guangcai, et al. Inertial and elastic-plastic effect on spallation damage of ductile metals[J]. Acta Physica Sinica, 2011, 60(7):074601. http://d.old.wanfangdata.com.cn/Periodical/wlxb201107066
    [16] 张凤国, 王裴, 胡晓棉, 等.爆轰加载下锡金属连续层裂损伤机理的数值分析[J].高压物理学报, 2017, 31(3):280-285. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201703009.htm

    Zhang Fengguo, Wang Pei, Hu Xiaomian, et al. Numerical analysis of high explosive-induced multiple layers in Sn metal[J]. Chinese Journal of High Pressure Physics, 2017, 31(3):280-285. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201703009.htm
    [17] Johnson J N. Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics, 1981, 52(4):2812-2825. doi: 10.1063/1.329011
    [18] Shao J L, Wang P, He A M. Compression-induced stacking fault tetrahedra around He bubbles in Al[J]. Journal of Applied Physics, 2014, 116(16):163516. doi: 10.1063/1.4900784
  • 加载中
图(9)
计量
  • 文章访问数:  4206
  • HTML全文浏览量:  1318
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-19
  • 修回日期:  2016-05-23
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回