盐腐蚀后混凝土的动态本构模型

聂良学 许金余 刘志群 罗鑫

聂良学, 许金余, 刘志群, 罗鑫. 盐腐蚀后混凝土的动态本构模型[J]. 爆炸与冲击, 2017, 37(4): 712-718. doi: 10.11883/1001-1455(2017)04-0712-07
引用本文: 聂良学, 许金余, 刘志群, 罗鑫. 盐腐蚀后混凝土的动态本构模型[J]. 爆炸与冲击, 2017, 37(4): 712-718. doi: 10.11883/1001-1455(2017)04-0712-07
Nie Liangxue, Xu Jinyu, Liu Zhiqun, Luo Xin. Dynamic constitutive model of concrete after salt corrosion[J]. Explosion And Shock Waves, 2017, 37(4): 712-718. doi: 10.11883/1001-1455(2017)04-0712-07
Citation: Nie Liangxue, Xu Jinyu, Liu Zhiqun, Luo Xin. Dynamic constitutive model of concrete after salt corrosion[J]. Explosion And Shock Waves, 2017, 37(4): 712-718. doi: 10.11883/1001-1455(2017)04-0712-07

盐腐蚀后混凝土的动态本构模型

doi: 10.11883/1001-1455(2017)04-0712-07
基金项目: 

国家自然科学基金项目 51078350

国家自然科学基金项目 51208507

爆炸冲击防灾减灾国家重点实验室开放课题 DPMEIKF201406

陕西省青年科技新星计划项目 2013KJXX-81

详细信息
    作者简介:

    聂良学(1990-),男,博士研究生,nieliangxue_kgd@126.com

  • 中图分类号: O347.3

Dynamic constitutive model of concrete after salt corrosion

  • 摘要: 为探究混凝土受盐腐蚀后的动态力学响应,配置了粉煤灰质量分数为15%的普通硅酸盐水泥混凝土,将其置于质量分数均为15%的NaCl和Na2SO4溶液中浸泡腐蚀60 d后,利用∅100 mm分离式霍普金森压杆实验装置,测试其受腐蚀后的动态力学性能,并结合宏观唯象损伤统计理论和Weibull分布思想,建立了混凝土受盐腐蚀后的动态统计损伤本构模型。结果表明:受盐腐蚀后,混凝土试件的动态抗压强度均有不同程度的下降,且NaCl溶液腐蚀试件的降幅大于Na2SO4溶液腐蚀试件;模型曲线与实验曲线的拟合度较高,能够较准确地描述混凝土在冲击荷载作用下的动态力学响应规律。
  • 图  1  3组混凝土试样的动态应力-应变曲线

    Figure  1.  Dynamic stress-strain curves of three groups of concrete specimens

    图  2  动态抗压强度-平均应变率曲线

    Figure  2.  Dynamic compressive strength vs. average strain rate

    图  3  动态强度增长因子-平均应变率对数曲线

    Figure  3.  Dynamic increase factor vs. the logarithm of average strain rate

    图  4  3组混凝土试样的扫描电镜图像

    Figure  4.  SEM images of three groups of concrete specimens

    图  5  实验曲线与模型曲线的对比

    Figure  5.  Comparison of experimental and model curves

    图  6  模型验证

    Figure  6.  Model verification

    表  1  混凝土配合比

    Table  1.   Mix proportions of concrete

    kg/m3
    水泥 灞河中砂 石灰岩碎石 粉煤灰
    338 215 643 1 144 60
    下载: 导出CSV

    表  2  不同应变率下模型参数

    Table  2.   Model parameters at different strain rates

    样品组 ${\bar {\dot \varepsilon }}$/s-1 a/10-5 m 样品组 ${\bar {\dot \varepsilon }}$/s-1 a/10-5 m 样品组 ${\bar {\dot \varepsilon }}$/s-1 a/10-5 m
    55.07 3.68 0.162 62.73 13.01 0.190 29.45 0.04 0.102
    67.86 20.61 0.211 81.05 57.64 0.285 51.76 0.24 0.110
    N 78.63 6.72 0.173 S1 92.98 11.05 0.171 S2 62.79 1.19 0.145
    91.41 0.10 0.094 102.95 2.17 0.096 73.37 4.52 0.169
    109.43 171.01 0.431 111.77 12.89 0.146 116.58 20.31 0.212
    下载: 导出CSV

    表  3  动态强度增长因子与平均应变率对数的关系

    Table  3.   Relation of dynamic compressive strength increase factor with the logarithm of average strain rate

    样品组 拟合公式 转换后的拟合公式 C
    N I=-3.316 8+2.480 2 lg ${\bar {\dot \varepsilon }}$ I=1-0.747 8 lg ${\bar {\dot \varepsilon }}$ -0.747 8
    S1 I=-3.620 5+2.691 7 lg ${\bar {\dot \varepsilon }}$ I=1-0.743 5 lg ${\bar {\dot \varepsilon }}$ -0.743 5
    S2 I=-1.203 1+1.426 1 lg ${\bar {\dot \varepsilon }}$ I=1-1.185 4 lg ${\bar {\dot \varepsilon }}$ -1.185 4
    下载: 导出CSV
  • [1] Uysal M, Yilmaz K, Ipek M. The effect of mineral admixtures on mechanical properties, chloride ion permeability and impermeability of self-compacting concrete[J]. Construction & Building Materials, 2012, 27(1):263-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f70dd84308a1d0eac0b8d89a78611866
    [2] 袁承斌, 张德峰, 刘荣桂, 等.不同应力状态下混凝土抗氯离子侵蚀的研究[J].河海大学学报(自然科学版), 2003, 31(1):50-54. doi: 10.3321/j.issn:1000-1980.2003.01.012

    Yuan Chengbin, Zhang Defeng, Liu Ronggui, et al. Diffusivity of chloride in concrete in different stress states[J]. Journal of Hehai University (Natural Sciences), 2003, 31(1):50-54. doi: 10.3321/j.issn:1000-1980.2003.01.012
    [3] Hossain K M A, Lachemi M. Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment[J]. Cement & Concrete Research, 2006, 36(6):1123-1133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef2703e202ecda3452a4e824b41f226f
    [4] 范颖芳, 黄振国, 郭乐工, 等.硫酸盐腐蚀后混凝土力学性能研究[J].郑州工业大学学报, 1999, 20(1):91-93. doi: 10.3969/j.issn.1671-6833.1999.01.028

    Fan Yingfang, Huang Zhenguo, Guo Legong, et al. Research on mechanics property of concrete after corrosion of sulphate[J]. Journal of Zhengzhou University of Technology, 1999, 20(1):91-93. doi: 10.3969/j.issn.1671-6833.1999.01.028
    [5] Chindaprasirt P, Chalee W. Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site[J]. Construction & Building Materials, 2014, 63(8):303-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e399e90b1fa8ca6d2d460f2b58bc078e
    [6] Kwon S J, Na U J, Sang S P, et al. Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for chloride diffusion[J]. Structural Safety, 2009, 31(1):75-83. doi: 10.1016/j.strusafe.2008.03.004
    [7] 史美伦, 张雄, 吴科如.混凝土中氯离子渗透性测定的电化学方法[J].硅酸盐通报, 1998(6):55-59. http://www.cnki.com.cn/Article/CJFDTOTAL-GSYT806.012.htm

    Shi Meilun, Zhang Xiong, Wu Keru. Electrochemical methods for the measurement of chloride permeability in concrete[J]. Bulletin of the Chinese Ceramic Society, 1998(6):55-59. http://www.cnki.com.cn/Article/CJFDTOTAL-GSYT806.012.htm
    [8] Deby F, Carcassès M, Sellier A. Probabilistic approach for durability design of reinforced concrete in marine environment[J]. Cement & Concrete Research, 2009, 39(5):466-471. http://www.sciencedirect.com/science/article/pii/S0008884609000507
    [9] Sun C, Chen J, Zhu J, et al. A new diffusion model of sulfate ions in concrete[J]. Construction & Building Materials, 2013, 39(1):39-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6df55ec9fa30547979f31d38ae712382
    [10] Thomas M, Bamforth P B. Modeling chloride diffusion in concrete: Effect of fly ash and slag[J]. Cement & Concrete Research, 1999, 29(4):487-495. http://www.sciencedirect.com/science/article/pii/S0008884698001926
    [11] 金祖权, 孙伟, 张云升, 等.混凝土在硫酸盐、氯盐溶液中的损伤过程[J].硅酸盐学报, 2006, 34(5):630-635. doi: 10.3321/j.issn:0454-5648.2006.05.025

    Jin Zuquan, Sun Wei, Zhang Yunsheng, et al. Damage of concrete in sulfate and chloride solution[J]. Journal of the Chinese Ceramic Society, 2006, 34(5):630-635. doi: 10.3321/j.issn:0454-5648.2006.05.025
    [12] 吴政, 张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报, 1996, 15(1):55-61. doi: 10.3321/j.issn:1000-6915.1996.01.008

    Wu Zheng, Zhang Chengjuan. Investigation of rock damage model, and its mechanical behaviour[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(1):55-61. doi: 10.3321/j.issn:1000-6915.1996.01.008
    [13] 李兆霞.损伤力学及其应用[M].北京:科学出版社, 2002.
    [14] 徐卫亚, 韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报, 2002, 21(6):787-791. doi: 10.3321/j.issn:1000-6915.2002.06.006

    Xu Weiya, Wei Lide. Study on statistical damage constitutive model of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6):787-791. doi: 10.3321/j.issn:1000-6915.2002.06.006
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  4153
  • HTML全文浏览量:  1279
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-12
  • 修回日期:  2016-04-18
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回