激波诱导火焰失稳与爆轰的条件研究

朱跃进 于蕾 张彭岗 潘振华 潘剑锋 董刚

朱跃进, 于蕾, 张彭岗, 潘振华, 潘剑锋, 董刚. 激波诱导火焰失稳与爆轰的条件研究[J]. 爆炸与冲击, 2017, 37(4): 741-747. doi: 10.11883/1001-1455(2017)04-0741-07
引用本文: 朱跃进, 于蕾, 张彭岗, 潘振华, 潘剑锋, 董刚. 激波诱导火焰失稳与爆轰的条件研究[J]. 爆炸与冲击, 2017, 37(4): 741-747. doi: 10.11883/1001-1455(2017)04-0741-07
Zhu Yuejin, Yu Lei, Zhang Penggang, Pan Zhenhua, Pan Jianfeng, Dong Gang. Conditions for shock wave induced flame instability and detonation[J]. Explosion And Shock Waves, 2017, 37(4): 741-747. doi: 10.11883/1001-1455(2017)04-0741-07
Citation: Zhu Yuejin, Yu Lei, Zhang Penggang, Pan Zhenhua, Pan Jianfeng, Dong Gang. Conditions for shock wave induced flame instability and detonation[J]. Explosion And Shock Waves, 2017, 37(4): 741-747. doi: 10.11883/1001-1455(2017)04-0741-07

激波诱导火焰失稳与爆轰的条件研究

doi: 10.11883/1001-1455(2017)04-0741-07
基金项目: 

国家自然科学基金项目 11402102

国家自然科学基金项目 11372140

江苏省自然科学基金青年项目 BK20140524

江苏省博士后基金项目 1402013B

江苏大学高级专业人才科研启动基金项目 14JDG031

详细信息
    作者简介:

    朱跃进(1986-),男,博士,讲师,zyjwind@163.com

  • 中图分类号: O381

Conditions for shock wave induced flame instability and detonation

  • 摘要: 采用九阶WENO和十阶中心差分格式数值求解激波与火焰作用过程,考察了激波强度、火焰尺寸对激波与球形火焰作用过程的影响。结果表明,增大激波强度或火焰尺寸均可在流场中引发爆轰,但激波强度的影响更大,并且其引发的爆轰可使火焰迅速膨胀,放热率提高,从而影响燃烧特性;此外,爆轰波传播过程中会迅速消耗可燃预混气,合并原有的反射激波,并在流场中形成局部高压区,极大地改变流场结构。
  • 图  1  计算区域示意图

    Figure  1.  Sketch of computational domain

    图  2  实验纹影[4]与计算密度的比较

    Figure  2.  Comparison between experimental schlieren images[4] and computational density images at selected times

    图  3  计算密度(Case 2)

    Figure  3.  Computational density images (Case 2)

    图  4  计算密度与质量分数(Case 3)

    Figure  4.  Images of computational density and mass fraction (Case 3)

    图  5  计算密度与质量分数(Case 5)

    Figure  5.  Images of computational density and mass fraction (Case 5)

    图  6  火焰有效面积随时间的变化

    Figure  6.  Time histories of flame effective area

    图  7  火焰平均反应放热率随时间的变化

    Figure  7.  Time histories of average reaction heat release rate

    表  1  不同激波马赫数和火焰尺寸的4组算例

    Table  1.   Four cases with different shock Mach numbers and flame sizes

    算例 Ma R0/m
    Case 1 1.7 0.019
    Case 2 2.1 0.019
    Case 3 2.5 0.019
    Case 4 1.7 0.024
    Case 5 2.1 0.024
    Case 6 2.5 0.024
    下载: 导出CSV
  • [1] Marble F E, Hendricks G J, Zukoski E E. Progress toward shock enhancement of supersonic combustion processes[C]//23rd Joint Propulsion Conference. San Diego, CA, 1987.
    [2] Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gas-phase combustion[J]. Combustion and Flame, 2007, 148(1/2):4-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4cf0d5c02c507b4281e25a3cd95da815
    [3] Markstein G H. A shock-tube study of flame front-pressure wave interaction[J]. Symposium (International) on Combustion, 1957, 6(1):387-398. doi: 10.1016/S0082-0784(57)80054-X
    [4] Thomas G O, Bambrey R, Brown C. Experimental observations of flame acceleration and transition to detonation following shock-flame interaction[J]. Combustion Theory and Modelling, 2001, 5(4):573-594. doi: 10.1088/1364-7830/5/4/304
    [5] Ju Y, Shimano A, Inoue O. Vorticity generation and flame distortion induced by shock flame interaction[J]. Symposium (International) on Combustion, 1998, 27(1):735-741. doi: 10.1016/S0082-0784(98)80467-0
    [6] Khokhlov A M, Oran E S, Thomas G O. Numerical simulation of deflagration-to-detonation transition: The role of shock-flame interactions in turbulent flames[J]. Combustion and Flame, 1999, 117(1/2):323-339.
    [7] Khokhlov A M, Oran E S. Numerical simulation of detonation initiation in a flame brush: The role of hot spots[J]. Combustion and Flame, 1999, 119(4):400-416. doi: 10.1016/S0010-2180(99)00058-9
    [8] Gamezo V N, Oran E S, Khokhlov A M. Three-dimensional reactive shock bifurcations[J]. Proceedings of the Combustion Institute, 2005, 30(2):1841-1847. doi: 10.1016/j.proci.2004.08.259
    [9] Teng H H, Jiang Z L, Hu Z M. Detonation initiation developing from the Richtmyer-Meshkov instability[J]. Acta Mechanica Sinica, 2007, 23(4):343-349. doi: 10.1007/s10409-007-0085-2
    [10] 谷壮志, 王超, 施红辉, 等.激波诱导火焰变形的数值模拟[J].浙江理工大学学报, 2011, 28(4):529-533. doi: 10.3969/j.issn.1673-3851.2011.04.010

    Gu Zhuangzhi, Wang Chao, Shi Honghui, et al. The numerical simulation of the flame deformation induced by shock wave[J]. Journal of Zhejiang Sci-Tech University, 2011, 28(4):529-533. doi: 10.3969/j.issn.1673-3851.2011.04.010
    [11] Dong G, Fan B, Ye J. Numerical investigation of ethylene flame bubble instability induced by shock waves[J]. Shock Waves, 2008, 17(6):409-419. doi: 10.1007/s00193-008-0124-3
    [12] 朱跃进, 董刚, 范宝春.受限空间内激波与火焰作用的三维计算[J].推进技术, 2012, 33(3):405-411. http://d.old.wanfangdata.com.cn/Periodical/tjjs201203011

    Zhu Yuejin, Dong Gang, Fan Baochun. Three-dimensional computation of the interactions between shock waves and flame in a confined space[J]. Journal of Propulsion Technology, 2012, 33(3):405-411. http://d.old.wanfangdata.com.cn/Periodical/tjjs201203011
    [13] 朱跃进, 董刚, 刘怡昕, 等.激波诱导火焰变形、混合和燃烧的数值研究[J].爆炸与冲击, 2013, 33(4):430-437. doi: 10.3969/j.issn.1001-1455.2013.04.016

    Zhu Yuejin, Dong Gang, Liu Yixin, et al. A numerical study on shock induced distortion, mixing and combustion of flame[J]. Explosion and Shock Waves, 2013, 33(4):430-437. doi: 10.3969/j.issn.1001-1455.2013.04.016
    [14] Zhu Y J, Dong G, Liu Y X. Three-dimensional numerical simulations of spherical flame evolutions in shock and reshock accelerated flows[J]. Combustion Science and Technology, 2013, 185(10):1415-1440. doi: 10.1080/00102202.2013.798656
    [15] 朱跃进, 董刚.激波冲击火焰的涡量特性研究[J].爆炸与冲击, 2015, 35(6):839-845. doi: 10.11883/1001-1455(2015)06-0839-07

    Zhu Yuejin, Dong Gang. A study of vorticity characteristics of shock-flame interaction[J]. Explosion and Shock Waves, 2015, 35(6):839-845. doi: 10.11883/1001-1455(2015)06-0839-07
    [16] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126:202-228. doi: 10.1006/jcph.1996.0130
    [17] 王革, 关奔.激波作用下R22气泡射流现象研究[J].力学学报, 2013, 45(5):707-715. http://d.old.wanfangdata.com.cn/Thesis/Y2235904

    Wang Ge, Guan Ben. A study on jet phenomenon of R22 gas cylinder under the impact of shock wave[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5):707-715. http://d.old.wanfangdata.com.cn/Thesis/Y2235904
    [18] Gordon S, Mcbride B J. Computer program for calculation of complex chemical equilibrium compositions and application Ⅰ: analysis[Z]. NASA Reference Publication 1311, 1994.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  4492
  • HTML全文浏览量:  1222
  • PDF下载量:  378
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-23
  • 修回日期:  2016-05-03
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回