惰化剂粒径对铝粉火焰传播特性影响的实验研究

陈曦 陈先锋 张洪铭 刘晅亚 张英 牛奕 胡东涛

陈曦, 陈先锋, 张洪铭, 刘晅亚, 张英, 牛奕, 胡东涛. 惰化剂粒径对铝粉火焰传播特性影响的实验研究[J]. 爆炸与冲击, 2017, 37(4): 759-765. doi: 10.11883/1001-1455(2017)04-0759-07
引用本文: 陈曦, 陈先锋, 张洪铭, 刘晅亚, 张英, 牛奕, 胡东涛. 惰化剂粒径对铝粉火焰传播特性影响的实验研究[J]. 爆炸与冲击, 2017, 37(4): 759-765. doi: 10.11883/1001-1455(2017)04-0759-07
Chen Xi, Chen Xianfeng, Zhang Hongming, Liu Xuanya, Zhang Ying, Niu Yi, Hu Dongtao. Effects of inerting agent with different particle sizes onthe flame propagation of aluminum dust[J]. Explosion And Shock Waves, 2017, 37(4): 759-765. doi: 10.11883/1001-1455(2017)04-0759-07
Citation: Chen Xi, Chen Xianfeng, Zhang Hongming, Liu Xuanya, Zhang Ying, Niu Yi, Hu Dongtao. Effects of inerting agent with different particle sizes onthe flame propagation of aluminum dust[J]. Explosion And Shock Waves, 2017, 37(4): 759-765. doi: 10.11883/1001-1455(2017)04-0759-07

惰化剂粒径对铝粉火焰传播特性影响的实验研究

doi: 10.11883/1001-1455(2017)04-0759-07
基金项目: 

国家自然科学基金项目 51174153

国家自然科学基金项目 51374164

建筑消防工程技术公安部重点实验室开放课题 KFKT2014ZD03

中央高校基本科研业务费专项资金项目 2015-zy-080

详细信息
    作者简介:

    陈曦(1990-),男,硕士研究生

    通讯作者:

    陈先锋,cxf618@whut.edu.cn

  • 中图分类号: O381

Effects of inerting agent with different particle sizes onthe flame propagation of aluminum dust

  • 摘要: 为探索惰化剂粒径对可燃工业粉尘火焰传播特性的影响,通过建立竖直粉尘燃烧管道实验平台,在碳酸氢钠质量分数为30%的惰化条件下,就碳酸氢钠粒径对铝粉燃烧火焰传播特性的影响进行了实验研究。结果表明:平均粒径为30 μm的碳酸氢钠粉体对平均粒径为15 μm的铝粉的火焰传播速度具有较好的抑制作用,惰性粉体与可燃工业粉尘应存在粒度匹配效应;碳酸氢钠粉体对铝粉火焰温度的惰化抑制效果与其粒径呈反比关系;碳酸氢钠粉体会减小铝粉火焰预热区厚度,预热区厚度随碳酸氢钠粒径的增加先减小后增大。此外,分析了碳酸氢钠粒径对铝粉火焰传播特性影响的作用机理。
  • 图  1  实验系统结构

    Figure  1.  Scheme of experimental system

    图  2  铝粉火焰传播过程

    Figure  2.  The flame propagation process of aluminum powder

    图  3  铝粉火焰传播图像截图

    Figure  3.  Partial image of the aluminumpowder flame propagation

    图  4  铝粉火焰结构示意图

    Figure  4.  Structure of the aluminum powder flame

    图  5  不同工况下铝粉火焰传播速度

    Figure  5.  Flame propagation speeds under different conditions

    图  6  不同工况下铝粉火焰温度变化

    Figure  6.  Flame temperature variations under different conditions

    图  7  碳酸氢钠粒径对铝粉火焰形态的影响

    Figure  7.  Influence of sodium bicarbonate particle size on flame formation

    图  8  不同工况下铝粉火焰预热区厚度

    Figure  8.  Flame thickness of the preheating zone under different conditions

    表  1  实验样品参数

    Table  1.   Specific parameters of the sample

    样品名称 分子式 相对分子质量 纯度/% 级别 实验用量/g
    铝粉 Al 26.98 99.0 分析纯 0.9
    碳酸氢钠 NaHCO3 84.01 99.5 分析纯 0.4
    下载: 导出CSV
  • [1] 多英全, 刘垚楠, 胡馨升.2009~2013年我国粉尘爆炸事故统计分析研究[J].中国安全生产科学技术, 2015, 11(2):186-190. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201502040

    Duo Yingquan, Liu Yaonan, Hu Xinsheng. Statistical analysis on dust explosion accidents occurring in China during 2009-2013[J]. Journal of Safety Science and Technology, 2015, 11(2):186-190. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201502040
    [2] 张超光, 蒋军成, 郑志琴.粉尘爆炸事故模式及其预防研究[J].中国安全科学学报, 2005, 15(6):73-76. doi: 10.3969/j.issn.1003-3033.2005.06.017

    Zhang Chaoguang, Jiang Juncheng, Zheng Zhiqin. Study on the mode and prevention of dust explosion accident[J]. China Safety Science Journal, 2005, 15(6):73-76. doi: 10.3969/j.issn.1003-3033.2005.06.017
    [3] Amyotte P R, Mintz K J, Peeg M J. Solid inerrant and their use in dust explosion prevention and mitigation[J]. Trans IChemE Part B, 1995, 73:89-100.
    [4] Amrogowicz J, Kordylewski W. Effectiveness of dust explosion suppression by carbonates and phosphates[J]. Combustion & Flame, 1991, 85(3):520-522. http://cn.bing.com/academic/profile?id=1a04e3968e6ebe8dd5560926fb8fd3bf&encoded=0&v=paper_preview&mkt=zh-cn
    [5] 谢波, 王克全.工业粉尘爆炸抑制技术研究现状及存在的问题[J].矿业安全与环保, 2000, 27(1):13-15. doi: 10.3969/j.issn.1008-4495.2000.01.005

    Xie Bo, Wang Kequan. Present study status of industrial dust explosion suppression techniques and existent problems[J]. Mining Safety & Environmental Protection, 2000, 27(1):13-15. doi: 10.3969/j.issn.1008-4495.2000.01.005
    [6] 伍毅, 袁旌杰, 蒯念生, 等.碳酸盐对密闭空间粉尘爆炸压力影响的试验研究[J].中国安全科学学报, 2010, 20(10):92-96. doi: 10.3969/j.issn.1003-3033.2010.10.017

    Wu Yi, Yuan Jingjie, Kuai Niansheng, et al. Effects of carbonates on dust explosion pressure in closed vessel[J]. China Safety Science Journal, 2010, 20(10):92-96. doi: 10.3969/j.issn.1003-3033.2010.10.017
    [7] 蔡周全, 张引合.干粉灭火剂粒度对抑爆性能的影响[J].矿业安全与环保, 2001, 28(4):14-16. doi: 10.3969/j.issn.1008-4495.2001.04.007
    [8] 韦伟, 翁春生.铝粉/空气二维黏性两相爆轰的数值模拟[J].爆炸与冲击, 2015, 35(1):29-35. doi: 10.11883/1001-1455(2015)01-0029-07

    Wei Wei, Weng Chunsheng. Numerical simulation for aluminum/air two-dimensional viscous two-phase detonation[J]. Explosion and Shock Waves, 2015, 35(1):29-35. doi: 10.11883/1001-1455(2015)01-0029-07
    [9] 曹卫国, 徐森, 梁济元, 等.煤粉尘爆炸过程中火焰的传播特性[J].爆炸与冲击, 2014, 34(5):586-593. doi: 10.11883/1001-1455(2014)05-0586-08

    Cao Weiguo, Xu Sen, Liang Jiyuan, et al. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion and Shock Waves, 2014, 34(5):586-593. doi: 10.11883/1001-1455(2014)05-0586-08
    [10] 李招宁, 王永国, 胡栋, 等.铝粉快速反应光谱中AlO B2Σ+→X2Σ+发射光谱的研究[J].原子与分子物理学报, 1996, 13(3):69-75. http://www.cnki.com.cn/Article/CJFDTOTAL-YZYF603.011.htm

    Li Zhaoning, Wang Yongguo, Hu Dong, et al. A study of the AlO (B2Σ+→X2Σ+) band system from fast reaction of aluminium dust[J]. Chinese Journal of Atomic and Molecular Physics, 1996, 13(3):69-75. http://www.cnki.com.cn/Article/CJFDTOTAL-YZYF603.011.htm
    [11] 孙金华.PMMA微粒子云中传播火焰的基本结构[J].热科学与技术, 2004, 3(1):76-80. doi: 10.3969/j.issn.1671-8097.2004.01.017

    Sun Jinhua. Structure of flame propagating through PMMA particle cloud[J]. Journal of Thermal Science and Technology, 2004, 3(1):76-80. doi: 10.3969/j.issn.1671-8097.2004.01.017
    [12] 孙金华, 卢平, 刘义.空气中悬浮金属微粒子的燃烧特性[J].南京理工大学学报(自然科学版), 2005, 29(5):582-585. doi: 10.3969/j.issn.1005-9830.2005.05.020

    Sun Jinhua, Lu Ping, Liu Yi. Combustion behavior of metal particles suspended in air[J]. Journal of Nanjing University of Science and Technology, 2005, 29(5):582-585. doi: 10.3969/j.issn.1005-9830.2005.05.020
    [13] 丁以斌, 孙金华, 何学超, 等.锆粉尘云的火焰传播特性[J].燃烧科学与技术, 2010, 16(4):353-357. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201004011

    Ding Yibin, Sun Jinhua, He Xuechao, et al. Flame propagation characteristic of zirconium particle cloud[J]. Journal of Combustion Science and Technology, 2010, 16(4):353-357. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201004011
    [14] 陈先锋.丙烷-空气预混火焰微观结构及加速传播过程中的动力学研究[D].合肥: 中国科学技术大学, 2007.
    [15] 高伟, 阿部俊太郎, 荣建忠, 等.气流特征对水平长管内石松子粉尘爆炸火焰结构的影响[J].爆炸与冲击, 2015, 35(3):372-379. doi: 10.11883/1001-1455-(2015)03-0372-08

    Gao Wei, Abe Shuntaro, Rong Jianzhong, et al. Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube[J]. Explosion and Shock Waves, 2015, 35(3):372-379. doi: 10.11883/1001-1455-(2015)03-0372-08
    [16] Hertzberg M. Inhibition and extinction of coal dust and methane explosions[M]. US Department of the Interior, Bureau of Mines, 1982.
    [17] Gao W, Mogi T, Sun J, et al. Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions[J]. Powder Technology, 2013, 249:168-174. doi: 10.1016/j.powtec.2013.08.007
    [18] Moussa R B, Guessasma M, Proust C, et al. Thermal radiation contribution to metal dust explosions[J]. Procedia Engineering, 2015, 102:714-721. doi: 10.1016/j.proeng.2015.01.172
    [19] Chen X, Zhang H, Chen X, et al. Effect of dust explosion suppression by sodium bicarbonate with different granulometric distribution[J]. Journal of Loss Prevention in the Process Industries, 2017. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=660a9144d3a94c93975531afa3e6863a
    [20] 范宝春, 谢波, 张小和, 等.惰性粉尘抑爆过程的实验研究[J].流体力学实验与测量, 2001(4):20-25. doi: 10.3969/j.issn.1672-9897.2001.04.005

    Fan Baochun, Xie Bo, Zhang Xiaohe, et al. Experimental research on explosion suppression by inert particles[J]. Experiments and Measurements in Fluid Mechanics, 2001(4):20-25. doi: 10.3969/j.issn.1672-9897.2001.04.005
    [21] 陈振豪, 倪文娟, 邱根跃, 等.碳酸氢钠干粉灭火机理的研究[J].消防科技, 1985(3):20-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=841710
    [22] 左前明, 程卫民, 汤家轩.粉体抑爆剂在煤矿应用研究的现状与展望[J].煤炭技术, 2010, 29(11):78-80. doi: 10.3969/j.issn.1006-530X.2010.11.021

    Zuo Qianming, Cheng Weimin, Tang Jiaxuan. Current status and prospects of application and research of powder coal mine explosion suppression agent[J]. Coal Technology, 2010, 29(11):78-80. doi: 10.3969/j.issn.1006-530X.2010.11.021
    [23] 任一丹, 刘龙, 袁旌杰, 等.粉尘爆炸中惰性介质抑制机理及协同作用[J].消防科学与技术, 2015, 34(2):158-162. doi: 10.3969/j.issn.1009-0029.2015.02.005

    Ren Yidan, Liu Long, Yuan Jingjie, et al. Inhibition mechanisms and synergy effects of solid inerrtants in dust explosion[J]. Fire Science and Technology, 2015, 34(2):158-162. doi: 10.3969/j.issn.1009-0029.2015.02.005
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  4356
  • HTML全文浏览量:  1341
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-24
  • 修回日期:  2016-05-03
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回