聚龙一号上磁驱动铝飞片发射实验的数值分析与再设计

阚明先 杨龙 段书超 王刚华 肖波 张朝辉 王贵林

阚明先, 杨龙, 段书超, 王刚华, 肖波, 张朝辉, 王贵林. 聚龙一号上磁驱动铝飞片发射实验的数值分析与再设计[J]. 爆炸与冲击, 2017, 37(5): 793-798. doi: 10.11883/1001-1455(2017)05-0793-06
引用本文: 阚明先, 杨龙, 段书超, 王刚华, 肖波, 张朝辉, 王贵林. 聚龙一号上磁驱动铝飞片发射实验的数值分析与再设计[J]. 爆炸与冲击, 2017, 37(5): 793-798. doi: 10.11883/1001-1455(2017)05-0793-06
Kan Mingxian, Yang Long, Duan Shuchao, Wang Ganghua, Xiao Bo, Zhang Zhaohui, Wang Guilin. Numerical analysis and redesign of magnetically driven aluminum flyer plateon PTS accelerator[J]. Explosion And Shock Waves, 2017, 37(5): 793-798. doi: 10.11883/1001-1455(2017)05-0793-06
Citation: Kan Mingxian, Yang Long, Duan Shuchao, Wang Ganghua, Xiao Bo, Zhang Zhaohui, Wang Guilin. Numerical analysis and redesign of magnetically driven aluminum flyer plateon PTS accelerator[J]. Explosion And Shock Waves, 2017, 37(5): 793-798. doi: 10.11883/1001-1455(2017)05-0793-06

聚龙一号上磁驱动铝飞片发射实验的数值分析与再设计

doi: 10.11883/1001-1455(2017)05-0793-06
基金项目: 

国家自然科学基金项目 11405167

国家自然科学基金项目 11571293

中国工程物理研究院科学技术发展基金项目 2015B0201023

详细信息
    作者简介:

    阚明先(1971—),男,硕士,副研究员,kanmx@caep.cn

  • 中图分类号: O361.3

Numerical analysis and redesign of magnetically driven aluminum flyer plateon PTS accelerator

  • 摘要: 聚龙一号上PTS-151发次实验中,磁驱动加速370 μm厚飞片测得的最大速度为18 km/s,磁驱动加速482 μm厚飞片测得的最大速度为19 km/s。采用MDSC2程序, 对PTS-151发次实验进行了数值分析,结果表明:PTS-151发次实验中测量的最大速度的含义不同于以往文献中飞片的最大速度。以往文献中发射飞片在测试过程中自由面未被烧蚀,测试的最大速度为飞片自由面速度;PTS-151发次实验中两个飞片在测量过程中自由面被烧蚀,实验测量的最大速度为飞片被完全烧蚀前的一瞬间飞片内部最后一个固体面的速度。在飞片自由面未被烧蚀之前,370 μm厚飞片的计算最大自由面速度仅为7 km/s,482 μm厚飞片的计算最大自由面速度仅为11.8 km/s,远低于测量值。对PTS-151发次实验条件下飞片尺寸进行了再设计,飞片厚度为680 μm时最优,既能保证自由面未烧蚀,又使得飞片的速度最大,达到17.5 km/s。
  • 图  1  PTS-151发次磁驱动发射飞片结构图

    Figure  1.  Cross section of 3D flyer configurationfor PTS-151 experiment

    图  2  PTS-151发次实验电流

    Figure  2.  Current for PTS-151 experiment

    图  3  PTS-151发次实验370 μm厚飞片速度

    Figure  3.  Free surface velocities of 370 μm flyer platesfor PTS-151 experiment

    图  4  410ns时370 μm厚飞片密度分布

    Figure  4.  Density distribution of 370 μm flyer at 410 ns

    图  5  PTS-151发次实验482 μm厚飞片速度

    Figure  5.  Free surface velocities of 482 μm flyer platesfor PTS-151 experiment

    图  6  470 ns时482 μm厚飞片密度分布

    Figure  6.  Density distribution of 482 μm flyer at 470 ns

    图  7  Z2434发次实验飞片速度

    Figure  7.  Free surface velocitiesof 2.004 mm flyer platesfor Z2434 experiment

    图  8  Z2434实验3 200 ns时铝飞片密度分布

    Figure  8.  Density distribution of 2.004 mm flyer platesfor Z2434 experiment at 3 200 ns

    表  1  不同厚度未烧蚀固体自由面的最大速度

    Table  1.   Maximum velocities of solid free-surface offlyer plates with different thickness

    h/μm k tf/ns vf/(km·s-1)
    370 0.570 340 7
    482 0.595 389 11.8
    530 0.606 412 13.8
    570 0.615 430 15.4
    630 0.628 460 16.9
    680 0.640 480 17.5
    770 0.659 - 16.3
    870 0.682 - 15.5
    下载: 导出CSV
  • [1] Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6):480-485. doi: 10.1016/j.ijimpeng.2010.10.019
    [2] Lemke R W, Knudson M D, Robinson A C, et al. Self-consistent, two-dimensional, magneto-hydrodynamic simulations of magnetically driven flyer plates[J]. Physics of Plasmas, 2003, 10(5):1867-1874. doi: 10.1063/1.1557530
    [3] Matzen M K, Sweeney M A, Adams R G, et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research[J]. Physics of Plasmas, 2005, 12:055503. doi: 10.1063/1.1891746
    [4] Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Physics of Plasmas, 2003, 10(4):1092-1099. doi: 10.1063/1.1554740
    [5] Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. Journal of Applied Physics, 2005, 98:073530. doi: 10.1063/1.2084316
    [6] Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Physical Review Letters, 2001, 87:225501. doi: 10.1103/PhysRevLett.87.225501
    [7] Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. Journal of Applied Physics, 2003, 94(7):4420-4431. doi: 10.1063/1.1604967
    [8] Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa[J]. Physical Review Letters, 2003, 90:035505. doi: 10.1103/PhysRevLett.90.035505
    [9] Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical re-shock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Physical Review B, 2004, 69:144209. doi: 10.1103/PhysRevB.69.144209
    [10] Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum[J]. Journal of Applied Physics, 2014, 116:204903. doi: 10.1063/1.4902863
    [11] 阚明先, 王刚华, 赵海龙, 等.磁驱动飞片二维磁流体力学数值模拟[J].强激光与离子束, 2013, 25(8):2137-2141. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201308052

    Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(8):2137-2141. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201308052
    [12] 阚明先, 王刚华, 张红平, 等.磁驱动高速飞片模拟中滑移界面处理[J].强激光与离子束, 2015, 27:015002. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201501036

    Kan Mingxian, Wang Ganghua, Zhang Hongping, et al. Sliding interface processing in simulation on magnetically driving high speed flyer[J]. High Power Laser and Particle Beams, 2015, 27:015002. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201501036
    [13] 阚明先, 张朝辉, 段书超, 等."聚龙一号"装置上磁驱动铝飞片实验的数值模拟[J].强激光与离子束, 2015, 27(12):014001. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201512044

    Kan Mingxian, Zhang Zhaohui, Duan Shuchao, et al. Numerical simulation of magnetically driven aluminum flyer plate on PTS accelerator[J]. High Power Laser and Particle Beams, 2015, 27(12):014001. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201512044
    [14] 夏明鹤, 计策, 王玉娟, 等.PTS装置工作模式及波形调节[J].强激光与粒子束, 2012, 24(11):2768-2772. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201211052

    Xia Minghe, Ji Ce, Wang Yujuan, et al. Operation models and waveform shaping of primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(11):2768-2772. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201211052
    [15] 阚明先, 王刚华, 赵海龙, 等.金属电阻率模型[J].爆炸与冲击, 2013, 33(3):282-286. doi: 10.11883/1001-1455(2013)03-0282-05

    Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Electrical resistivity model for metals[J]. Explosion and Shock Waves, 2013, 33(3):282-286. doi: 10.11883/1001-1455(2013)03-0282-05
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  4080
  • HTML全文浏览量:  1208
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-29
  • 修回日期:  2016-05-17
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回