低含水率砂土和饱和砂土场地爆炸成坑特性实验

贾永胜 王维国 谢先启 杨贵 姚颖康

贾永胜, 王维国, 谢先启, 杨贵, 姚颖康. 低含水率砂土和饱和砂土场地爆炸成坑特性实验[J]. 爆炸与冲击, 2017, 37(5): 799-806. doi: 10.11883/1001-1455(2017)05-0799-08
引用本文: 贾永胜, 王维国, 谢先启, 杨贵, 姚颖康. 低含水率砂土和饱和砂土场地爆炸成坑特性实验[J]. 爆炸与冲击, 2017, 37(5): 799-806. doi: 10.11883/1001-1455(2017)05-0799-08
Jia Yongsheng, Wang Weiguo, Xie Xianqi, Yang Gui, Yao Yingkang. Characterization of blast-induced craters in low-moistureand saturated sand from field experiments[J]. Explosion And Shock Waves, 2017, 37(5): 799-806. doi: 10.11883/1001-1455(2017)05-0799-08
Citation: Jia Yongsheng, Wang Weiguo, Xie Xianqi, Yang Gui, Yao Yingkang. Characterization of blast-induced craters in low-moistureand saturated sand from field experiments[J]. Explosion And Shock Waves, 2017, 37(5): 799-806. doi: 10.11883/1001-1455(2017)05-0799-08

低含水率砂土和饱和砂土场地爆炸成坑特性实验

doi: 10.11883/1001-1455(2017)05-0799-08
基金项目: 

国家自然科学基金面上项目 51379067

长江学者和创新团队发展计划项目 IRT1125

详细信息
    作者简介:

    贾永胜(1970—),男,博士,高级工程师

    通讯作者:

    王维国,2008hmily@163.com

  • 中图分类号: O383.1;TU437

Characterization of blast-induced craters in low-moistureand saturated sand from field experiments

  • 摘要: 爆坑是土中爆炸荷载作用下的主要响应形式,基于大型爆炸实验场地,开展了一系列低含水率砂土和饱和砂土中的爆炸成坑现场实验,研究了药量、埋深及含水率等因素对土中爆坑效应的影响。研究结果显示:根据药包的比例埋深,低含水率砂土场地的最终爆坑形态可以分为隐爆、塌陷型漏斗坑和抛掷型爆坑3类,发生封闭爆炸的临界比例埋深为2.3 m/kg1/3;形成抛掷型爆坑的条件为比例埋深小于1.5 m/kg1/3;当比例埋深为1.5~2.3 m/kg1/3时,形成塌陷型漏斗坑。土中孔隙水压力的增大导致坑壁周围土体发生了液化流动、坍塌,最终造成爆坑横向尺寸的扩大。相同爆源条件下,饱和砂土场地形成的坑面直径比低含水率砂土场地提高了25%~35%,饱和砂土场地发生封闭爆炸的极限比例埋深可达2.5 m/kg1/3
  • 图  1  爆炸实验坑

    Figure  1.  Pit for blasting experiments

    图  2  爆炸成坑实验药包布置

    Figure  2.  Layout of explosive charges for blasting experiments

    图  3  低含水率砂土场地爆后地表运动与药包比例埋深的关系

    Figure  3.  Relationship between ejecta shape and scaled burial depth of charge in low-moisture sand

    图  4  典型塌陷型爆坑的形成过程(SE2)

    Figure  4.  Formation of collapse crater (SE2)

    图  5  典型抛掷型爆坑的形成过程(SE8)

    Figure  5.  Formation of a cast blasting crater (SE8)

    图  6  爆坑直径实验与ConWep计算的对比

    Figure  6.  Comparison of crater diameter betweenexperimental data and results suggested by ConWep

    图  7  饱和砂土中典型的爆坑轮廓

    Figure  7.  Contour of blast-induced craters in saturated sand

    图  8  低含水率砂土和饱和砂土场地爆坑尺寸对比

    Figure  8.  Comparison of blast-induced cratersin low-moisture and saturated sand

    图  9  比例爆坑直径随比例埋深的变化

    Figure  9.  Scaled crater diameter versusscaled burial depth

    表  1  药孔的药量和埋深

    Table  1.   Charge mass and burial depth for each blasting experiment

    编号 药量/kg 埋深/m 编号 药量/kg 埋深/m
    低含水率砂土 饱和砂土
    SE1 0.2 1.0 JE1 0.3 1.13
    SE2 0.4 1.0 JE2 0.4 0.83
    SE3 0.8 1.0 JE3 0.3 0.93
    SE4 0.2 1.5 JE4 0.4 1.35
    SE5 0.4 1.5 JE5 0.4 0.93
    SE6 0.8 1.5 JE6 0.2 1.35
    SE7 0.2 0.5
    SE8 0.4 0.5
    下载: 导出CSV

    表  2  低含水率砂土场地爆坑形态

    Table  2.   Blast-induced crater formation in low-moisture sand

    编号 药包比例埋深 爆坑尺寸 爆坑形态特征描述
    λ/(m·kg-1/3) η/(m·kg-7/24) D/m h/m
    SE1 1.93 1.77 0.501) 0.401) 无抛掷,地表隆起后下陷成塌陷型爆坑,爆坑周围有数圈不规则裂纹
    SE2 1.53 1.45 1.301) 0.301) 鼓包明显但无抛掷,内陷形成塌陷型爆坑,爆坑周围有数圈不规则裂纹
    SE3 1.21 1.18 1.20 0.32 发生明显抛掷,形成漏斗状可见爆坑
    SE4 2.89 2.66 - - 隐爆,地面未鼓包
    SE5 2.29 2.17 0.741) 0.301) 无抛掷,地表特征不明显,爆后形成小型塌陷型爆坑,周边有明显裂纹
    SE6 1.82 1.77 1.201) 0.381) 无抛掷,地表隆起后下陷成塌陷型爆坑,爆坑周围有数圈不规则裂纹
    SE7 0.96 0.89 1.05 0.25 抛掷明显且抛掷距离较远,形成抛掷型可见爆坑
    SE8 0.76 0.72 1.25 0.28 抛掷明显且抛掷距离远,形成抛掷型可见爆坑
      1)塌陷型爆坑
    下载: 导出CSV

    表  3  饱和砂土场地爆坑形态

    Table  3.   Blast-induced crater formation in saturated sand

    编号 药包比例埋深 爆坑尺寸 爆坑形态特征描述
    λ/(m·kg-1/3) η/(m·kg-7/24) D/m h/m
    JE1 1.82 1.71 - - 能观测到地表土体破裂,形成的爆坑瞬间被液化引发的流砂及水覆盖
    JE2 1.21 1.16 1.40 0.32 抛掷明显,但爆后能观测到坑壁有流动的砂土
    JE3 1.50 1.41 1.20 0.32 抛掷明显,但爆后能观测到坑壁有流动的砂土
    JE4 1.97 1.88 - - 能观测到地表土体破裂,形成的爆坑瞬间被液化引发的流砂及水覆盖
    JE5 1.36 1.30 1.25 0.36 抛掷明显,但爆后能观测到坑壁有流动的砂土
    JE6 2.49 2.30 - - 地表几乎观测不到隆起和抛掷现象
    下载: 导出CSV

    表  4  低含水率砂土和饱和砂土场地爆坑直径对比

    Table  4.   Comparison of crater diameters in low-moisture and saturated sand

    砂土 编号 W/kg WTNT/kg d/m D/m
    低含水率 SE2 0.4 0.28 1.0 1.31)
    低含水率 SE8 0.4 0.28 0.5 1.25
    饱和 JE2 0.4 0.32 0.83 1.4
    饱和 JE5 0.4 0.32 0.93 1.25
      注:塌陷型爆坑
    下载: 导出CSV
  • [1] 连峰, 龚晓南, 徐杰, 等.爆夯动力固结法加固软基试验研究[J].岩土力学, 2009, 30(3):859-864. doi: 10.3969/j.issn.1000-7598.2009.03.052

    Lian Feng, Gong Xiaonan, Xu Jie, et al. Experimental research on soft foundation treatment by blasting ramming dynamic consolidation[J]. Rock and Soil Mechanics, 2009, 30(3):859-864. doi: 10.3969/j.issn.1000-7598.2009.03.052
    [2] Gohl W B, Martin T, Elliott R J. Explosive compaction of granular soils and in situ liquefaction testing using sequential detonation of explosives[C]//Proceedings of the 1st International Symposium on Ground Improvement Technologies and Case Histories. Singapore, 2010: 199-207.
    [3] 穆朝民, 任辉启, 辛凯, 等.变埋深条件下土中爆炸成坑效应[J].解放军理工大学学报(自然科学版), 2010, 11(2):112-116. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb201002003

    Mu Chaomin, Ren Huiqi, Xin Kai, et al. Effects of crater formed by explosion in soils[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2):112-116. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb201002003
    [4] 穆朝民, 任辉启, 李永池, 等.变埋深条件下饱和土爆炸能量耦合系数的试验研究[J].岩土力学, 2010, 31(5):1574-1578. doi: 10.3969/j.issn.1000-7598.2010.05.039

    Mu Chaomin, Ren Huiqi, Li Yongchi, et al. Experiment study of explosion energy coupling coefficient with different burial depths in saturated soils[J]. Rock and Soil Mechanics, 2010, 31(5):1574-1578. doi: 10.3969/j.issn.1000-7598.2010.05.039
    [5] 施鹏, 辛凯, 杨秀敏, 等.土中装药不同埋深爆炸试验研究[J].工程力学, 2006, 23(12):171-174. doi: 10.3969/j.issn.1000-4750.2006.12.030

    Shi Peng, Xin Kai, Yang Xiumin, et al. Experimental study of explosion with different burial depths in soil[J]. Engineering Mechanics, 2006, 23(12):171-174. doi: 10.3969/j.issn.1000-4750.2006.12.030
    [6] Simpson P T, Zimmie T F, Abdoun T B. Explosion tests on embankment models in the geotechnical centrifuge[C]//Proceedings of International Conference on New Developments in Geoenvironmental and Geotechnical Engineering. Incheon, Korea: Korean Institute of Construction Technology Education, 2006: 1-8.
    [7] 钱七虎, 王明洋.岩土中的冲击爆炸效应[M].北京:国防工业出版社, 2010.
    [8] 钱七虎.大型抛掷爆破中的重力影响[J].解放军理工大学学报(自然科学版), 2010, 11(2):103-105. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb201002001

    Qian Qihu. Influence of gravity in large-scale throw blasting[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2):103-105. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb201002001
    [9] Ambrosini R D, Luccioni B M, Danesi R F. Influence of the soil properties on craters produced by explosions on the soil surface[J]. Mecánica Computacional, 2004, 73(3):1-20.
    [10] Luccioni B M, Ambrosini R D, Nurick G N, et al. Craters produced by underground explosions[J]. Computers and Structures, 2009, 87(21/22):1366-1373.
    [11] Wang P, Xei X A, He W D. Preparation and performance of a novel water gel explosive containing expired propellant grains[J]. Central European Journal of Energetic Materials, 2013, 10(4):495-507.
    [12] Hyde D W. Microcomputer programs of TM5-855-1: ConWep[Z]. Army Engineers Waterways Experimentation Station, US Army, 1988.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  4430
  • HTML全文浏览量:  1380
  • PDF下载量:  311
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-04
  • 修回日期:  2016-06-07
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回