汽油蒸气/空气预混火焰的无拉伸层流燃烧速率

李阳超 杜扬 齐圣 李国庆 王世茂

李阳超, 杜扬, 齐圣, 李国庆, 王世茂. 汽油蒸气/空气预混火焰的无拉伸层流燃烧速率[J]. 爆炸与冲击, 2017, 37(5): 863-870. doi: 10.11883/1001-1455(2017)05-0863-08
引用本文: 李阳超, 杜扬, 齐圣, 李国庆, 王世茂. 汽油蒸气/空气预混火焰的无拉伸层流燃烧速率[J]. 爆炸与冲击, 2017, 37(5): 863-870. doi: 10.11883/1001-1455(2017)05-0863-08
Li Yangchao, Du Yang, Qi Sheng, Li Guoqing, Wang Shimao. Gasoline vapor/air premixed flame's unstretched laminar burning velocity[J]. Explosion And Shock Waves, 2017, 37(5): 863-870. doi: 10.11883/1001-1455(2017)05-0863-08
Citation: Li Yangchao, Du Yang, Qi Sheng, Li Guoqing, Wang Shimao. Gasoline vapor/air premixed flame's unstretched laminar burning velocity[J]. Explosion And Shock Waves, 2017, 37(5): 863-870. doi: 10.11883/1001-1455(2017)05-0863-08

汽油蒸气/空气预混火焰的无拉伸层流燃烧速率

doi: 10.11883/1001-1455(2017)05-0863-08
基金项目: 

国家自然科学基金项目 51704301

国防科技基金项目 3604031

重庆市研究生科研创新项目 CYS15235

重庆市研究生科研创新项目 CYB16128

详细信息
    作者简介:

    李阳超(1991—),男,硕士研究生, liyangchao91@163.com

  • 中图分类号: O381

Gasoline vapor/air premixed flame's unstretched laminar burning velocity

  • 摘要: 为了研究汽油蒸气/空气的爆炸特性,介绍了汽油蒸气/空气预混火焰的无拉伸层流燃烧速率。通过实验研究了无拉伸层流燃烧速率,与汽油的主要组分异辛烷和正庚烷与空气的预混火焰层流燃烧速率做了对比,发现汽油蒸气/空气的无拉伸层流燃烧速率小于异辛烷和正庚烷与空气的预混火焰无拉伸层流燃烧速率,但无拉伸层流燃烧速率随当量比的变化规律相同,随着当量比增大,无拉伸层流燃烧速率呈先增大、再减小的变化趋势,最大值在当量比为1处取得。
  • 图  1  实验布局示意图

    Figure  1.  Schematic of experimental layout

    图  2  火焰半径提取示意图

    Figure  2.  Illustration of flame radius extracted

    图  3  汽油蒸气体积分数为2.00%的汽油蒸气/空气预混火焰传播高速摄影图像

    Figure  3.  High-speed images of gasoline vapor/air premixed flame propagation at the gasoline vapor volume fraction of 2.00%

    图  4  汽油蒸气体积分数不同的条件下汽油蒸气/空气预混火焰传播高速摄影图像

    Figure  4.  High-speed images of gasoline vapor/air premixed flame propagation at different gasoline vapor volume fractions

    图  5  爆炸孕育期τpreg定义示意图

    Figure  5.  The definition of explosion pregnant period τpreg

    图  6  拉伸火焰速率与火焰拉伸率之间的关系

    Figure  6.  Relationship between stretched flame speed and flame stretch rate

    图  7  无拉伸层流燃烧速率随当量比的变化规律

    Figure  7.  Unstretched laminar burning velocity varied with equivalence ratio

  • [1] 刘文辉, 蒋新生, 周建忠, 等.不同环境条件油气爆炸极限测试模拟实验系统[J].后勤工程学院学报, 2013, 29(6):24-25. doi: 10.3969/j.issn.1672-7843.2013.06.005

    Liu Wenhui, Jiang Xinsheng, Zhou Jianzhong, et al. Simulation experimental system for explosion limit measurement of gasolineair mixture under different environmental conditions[J]. Journal of Logistical Engineering University, 2013, 29(6):24-25. doi: 10.3969/j.issn.1672-7843.2013.06.005
    [2] Mannaa O, Mansour M S, Roberts W L, et al. Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON[J]. Combustion and Flame, 2015, 162(6):2311-2321. doi: 10.1016/j.combustflame.2015.01.004
    [3] Lipatnikov A N, Shy S S, Li W Y. Experimental assessment of various methods of determination of laminar flame speed in experiments with expanding spherical flames with positive Markstein lengths[J]. Combustion and Flame, 2015, 162(7):2840-2854. doi: 10.1016/j.combustflame.2015.04.003
    [4] Varea E, Modica V, Renou B, et al. Pressure effects on laminar burning velocities and Markstein lengths for Isooctane-Ethanol-Air mixtures[J]. Proceedings of the Combustion Institute, 2013, 34(1):735-744. doi: 10.1016/j.proci.2012.06.072
    [5] Varea E, Modica V, Vandel A, et al. Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: Application to laminar spherical flames for methane, ethanol and isooctane/air mixtures[J]. Combustion and Flame, 2012, 159(2):577-590. doi: 10.1016/j.combustflame.2011.09.002
    [6] 赵衡阳.气体与粉尘爆炸原理[M].北京:北京理工大学出版社, 1995:43.
    [7] Ai Yuhua, Zhou Zhen, Chen Zheng, et al. Laminar flame speed and Markstein length of syngas at normal and elevated pressures and temperatures[J]. Fuel, 2014, 137:339-345. doi: 10.1016/j.fuel.2014.08.004
    [8] Bonhomme A, Selle L, Poinsot T. Curvature and confinement effects for flame speed measurements in laminar spherical and cylindrical flames[J]. Combustion and Flame, 2013, 160(7):1208-1214. doi: 10.1016/j.combustflame.2013.02.003
    [9] Chao J, Lee J H S, Bauwens C R, et al. Laminar burning velocities of various silanes[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:471-477. doi: 10.1016/j.jlp.2014.11.019
    [10] Bosschaart K J, de Goey L P H. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method[J]. Combustion and Flame, 2004, 136(3):261-269. doi: 10.1016/j.combustflame.2003.10.005
    [11] Hayakawa A, Goto T, Mimoto R, et al. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures[J]. Fuel, 2015, 159:98-106. doi: 10.1016/j.fuel.2015.06.070
    [12] 齐圣.受限空间油气爆炸与细水雾抑制实验与数值仿真研究[D].重庆: 后勤工程学院, 2014: 107.
    [13] Clavin P. Dynamic behavior of premixed flame fronts in laminar and turbulent flows[J]. Progress in Energy and Combustion Science, 1985, 11(1):1-59. doi: 10.1016/0360-1285(85)90012-7
    [14] Kelley A P, Law C K. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames[J]. Combustion and Flame, 2009, 156(9):1844-1851. doi: 10.1016/j.combustflame.2009.04.004
    [15] Huang Zuohua, Zhang Yong, Zeng Ke, et al. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures[J]. Combustion and Flame, 2006, 146(1/2):302-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2bcdfee224dec3ac28a2c4d5bab5510f
    [16] Liao S Y, Jiang D M, Gao J, et al. Measurements of Markstein numbers and laminar burning velocities for liquefied petroleum gas-air mixtures[J]. Fuel, 2004, 83(10):1281-1288. doi: 10.1016/j.fuel.2003.12.013
    [17] Burke M P, Chen Z, Ju Y, et al. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames[J]. Combustion and Flame, 2009, 156(4):771-779. doi: 10.1016/j.combustflame.2009.01.013
    [18] Turns S R. An introduction to combustion: Concepts and applications[M]. 3ed. Boston: McGraw-Hill Higher Education, 2012: 218.
    [19] Zhang Peili, Du Yang, Wu Songlin, et al. Flame regime estimations of gasoline explosion in a tube[J]. Journal of Loss Prevention in the Process Industries, 2015, 33:304-310. doi: 10.1016/j.jlp.2015.01.010
    [20] Smallbone A J, Liu W, Law C K, et al. Experimental and modeling study of laminar flame speed and non-premixed counterflow ignition of n-heptane[J]. Proceedings of the Combustion Institute, 2009, 32(1):1245-1252. doi: 10.1016/j.proci.2008.06.213
  • 加载中
图(7)
计量
  • 文章访问数:  4658
  • HTML全文浏览量:  1411
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-15
  • 修回日期:  2016-10-18
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回