线圈脉冲电流对破甲弹金属射流箍缩特性的影响

孟学平 雷彬 向红军 吕庆敖 黄旭

孟学平, 雷彬, 向红军, 吕庆敖, 黄旭. 线圈脉冲电流对破甲弹金属射流箍缩特性的影响[J]. 爆炸与冲击, 2017, 37(5): 923-928. doi: 10.11883/1001-1455(2017)05-0923-06
引用本文: 孟学平, 雷彬, 向红军, 吕庆敖, 黄旭. 线圈脉冲电流对破甲弹金属射流箍缩特性的影响[J]. 爆炸与冲击, 2017, 37(5): 923-928. doi: 10.11883/1001-1455(2017)05-0923-06
Meng Xueping, Lei Bin, Xiang Hongjun, Lü Qing'ao, Huang Xu. Effect of pulsed current of coil on pinching characteristics of shaped charge jet[J]. Explosion And Shock Waves, 2017, 37(5): 923-928. doi: 10.11883/1001-1455(2017)05-0923-06
Citation: Meng Xueping, Lei Bin, Xiang Hongjun, Lü Qing'ao, Huang Xu. Effect of pulsed current of coil on pinching characteristics of shaped charge jet[J]. Explosion And Shock Waves, 2017, 37(5): 923-928. doi: 10.11883/1001-1455(2017)05-0923-06

线圈脉冲电流对破甲弹金属射流箍缩特性的影响

doi: 10.11883/1001-1455(2017)05-0923-06
基金项目: 

国家自然科学基金项目 51307182

详细信息
    作者简介:

    孟学平(1988—), 男, 博士研究生, mxp19880104@163.com

  • 中图分类号: O389;TJ99

Effect of pulsed current of coil on pinching characteristics of shaped charge jet

  • 摘要: 为了研究线圈脉冲电流参数对破甲弹金属射流箍缩特性的影响, 提出了均匀线圈中脉冲电流作用下不均匀粗细金属射流磁感应强度、感应电流密度及箍缩电磁力分布的理论模型, 建立了线圈与金属射流作用的有限元模型, 分析了励磁线圈中所施加脉冲电流参数对金属射流的影响规律。结果表明, 随着励磁线圈中所施加脉冲电流幅值的增大, 金属射流中的感应电流密度、磁感应强度及电磁力也随之增大, 励磁线圈中所施加的脉冲电流幅值Jmax≥1×1010 A/m2, 才能保证金属射流可靠变形;随着励磁线圈中所施加脉冲电流频率的增加, 金属射流中的感应电流密度、磁感应强度及电磁力整体均呈现一定程度的趋肤效应, 且在一定的频率范围内, 趋肤层逐渐变薄, 分析得知, 当励磁线圈中脉冲电流的频率满足50 kHz≤f≤100 kHz时, 就能够保证金属射流发生有效变形, 进而延缓金属射流箍缩直至断裂的过程。
  • 图  1  线圈磁场对破甲弹金属射流的作用原理

    Figure  1.  Mechanism of the coil magnetic field's action on shaped charge jet of HEAT

    图  2  金属射流二维模型

    Figure  2.  2D model of shaped charge jet

    图  3  励磁线圈与金属射流三维剖面图

    Figure  3.  3D cross-section model of coil and shaped charge jet

    图  4  线圈加载电流曲线

    Figure  4.  Current passing through the coil

    图  5  不同幅值脉冲电流下感应电流随时间的变化规律

    Figure  5.  Variations of induced current with time in pulsed current of different amplitudes

    图  6  不同幅值脉冲电流下磁感应强度随时间的变化规律

    Figure  6.  Variations of magnetic flux intensity with time in pulsed current of different amplitudes

    图  7  不同幅值脉冲电流下节点电磁力随时间的变化规律

    Figure  7.  Variations of electromagnetic force with time in pulsed current of different amplitudes

    图  8  不同频率脉冲电流下节点感应电流密度的径向分布

    Figure  8.  Distributions of induced current density along radial direction in pulsed current of different frequencies

    图  9  不同频率脉冲电流下节点磁感应强度的径向分布

    Figure  9.  Distributions of magnetic flux intensity along radial direction in pulsed current of different frequencies

    图  10  不同频率脉冲电流下节点电磁力的径向分布

    Figure  10.  Distributions of electro-magnetic force along radial direction in pulsed current of different frequencies

    图  11  金属射流凸起部分和凹陷部分磁压力差随线圈脉冲电流频率的变化规律

    Figure  11.  Variations of magnetic pressure difference between protuberance and pit with pulsed current frequency

  • [1] 陈闯, 王晓鸣, 李文彬, 等.爆轰波波形与药型罩结构匹配对杆式射流成形的影响[J].爆炸与冲击, 2015, 35(6):812-819. doi: 10.11883/1001-1455(2015)06-0812-08

    Chen Chuang, Wang Xiaoming, Li Wenbin, et al. Effect of matching of detonation waveform with liner configuration on the rod-like jet formation[J]. Explosion and Shock Waves, 2015, 35(6):812-819. doi: 10.11883/1001-1455(2015)06-0812-08
    [2] Karlsson H E V. Computer simulation of shaped charge jet fragmentation[C]//The 19th International Symposium on Ballistics. Interlaken, Switzerland, 2001: 819-826. http: //aux.ciar.org/ttk/mbt/papers/symp_19/WM36_819.pdf
    [3] Horsfall I, Petrou E, Champion S M. Shaped charge attack of spaced and composite armour[C]//The 23th International Symposium on Ballistics. Tarragona, Spain, 2007: 1281-1288.
    [4] Shvetsov G A, Matrosov A D, Fedorov S V, et al. Electromagnetic control of the shaped-charge effect[C]//The 19th International Symposium of Ballistics. Interlaken, Switzerland, 2001: 851-857.
    [5] Shvetsov G A, Matrosov A D. Qualitative physical model for the disruption of shaped-charge jets by a current pulse[C]//The 20th International Symposium on Ballistics. Orlando, FL, 2002: 613-619.
    [6] Shvetsov G A, Matrosov A D, Fedorov S V, et al. Effect of external magnetic fields on shaped-charge operation[J]. International Journal of Impact Engineering, 2011, 38(6):521-526. doi: 10.1016/j.ijimpeng.2010.10.024
    [7] Fedorov S V, Babkin A V, Ladov S V, et al. Magnetic armor as a method of anti-terror protection of objects against shaped-charge action[C]//The 23th International Symposium on Ballistics. Tarragona, Spain, 2007: 1091-1098.
    [8] Fedorov S V. Magnetic stabilization of elongation of metal shaped charge jets[C]//The 25th International Symposium on Ballistics. Beijing, 2010: 967-975. http: //www.wanfangdata.com.cn/details/detail.do?_type=conference&id=WFHYXW378921
    [9] Fedorov S V, Ladov S V. Powerful electric discharge as method of anti-shaped-charge protection[C]//The 27th International Symposium on Ballistics. Freiburg, Germany, 2013: 1723-1734.
    [10] Grace F, Degnan J, Roth C, et al. Shaped charge jets driven by electromagnetic energy[C]//The 28th International Symposium on Ballistics. Atlanta, GA, 2014: 15-26.
    [11] 俎栋林.电动力学[M].北京:清华大学出版社, 2006:111-117.
    [12] 孙承纬.爆炸物理学[M].北京:科学出版社, 2011:1048-1061.
    [13] 金龙文, 雷彬, 李治源, 等.轨道炮刨削形成机理分析及数值模拟[J].爆炸与冲击, 2013, 33(5):537-543. doi: 10.3969/j.issn.1001-1455.2013.05.014

    Jin Longwen, Lei Bin, Li Zhiyuan, et al. Formation mechanism analysis and numerical simulation of railgun gouging[J]. Explosion and Shock Waves, 2013, 33(5):537-543. doi: 10.3969/j.issn.1001-1455.2013.05.014
  • 加载中
图(11)
计量
  • 文章访问数:  4163
  • HTML全文浏览量:  1235
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-17
  • 修回日期:  2016-07-19
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回