破片高速侵彻中厚背水钢板的剩余特性

陈长海 侯海量 张元豪 戴文喜 朱锡 方志威

陈长海, 侯海量, 张元豪, 戴文喜, 朱锡, 方志威. 破片高速侵彻中厚背水钢板的剩余特性[J]. 爆炸与冲击, 2017, 37(6): 959-965. doi: 10.11883/1001-1455(2017)06-0959-07
引用本文: 陈长海, 侯海量, 张元豪, 戴文喜, 朱锡, 方志威. 破片高速侵彻中厚背水钢板的剩余特性[J]. 爆炸与冲击, 2017, 37(6): 959-965. doi: 10.11883/1001-1455(2017)06-0959-07
Chen Changhai, Hou Hailiang, Zhang Yuanhao, Dai Wenxi, Zhu Xi, Fang Zhiwei. Residual characteristics of moderately thick water-backed steel plates penetrated by high-velocity fragments[J]. Explosion And Shock Waves, 2017, 37(6): 959-965. doi: 10.11883/1001-1455(2017)06-0959-07
Citation: Chen Changhai, Hou Hailiang, Zhang Yuanhao, Dai Wenxi, Zhu Xi, Fang Zhiwei. Residual characteristics of moderately thick water-backed steel plates penetrated by high-velocity fragments[J]. Explosion And Shock Waves, 2017, 37(6): 959-965. doi: 10.11883/1001-1455(2017)06-0959-07

破片高速侵彻中厚背水钢板的剩余特性

doi: 10.11883/1001-1455(2017)06-0959-07
基金项目: 

国家自然科学基金项目 51409253

国家自然科学基金项目 51479204

详细信息
    作者简介:

    陈长海(1985—),男,博士,讲师, chenchanghai0746@163.com

  • 中图分类号: O385

Residual characteristics of moderately thick water-backed steel plates penetrated by high-velocity fragments

  • 摘要: 为探讨破片高速侵彻中厚背水钢板的剩余特性,通过弹道实验,分析了弹体和靶板的破坏模式,比较了破片侵彻垂直和倾斜背水钢板后的瞬时余速和运动轨迹, 以及由此引起的初始冲击波的压力特性。结果表明,破片在高速侵彻下,头部产生了严重的镦粗变形,钢板背后水介质的动支撑作用不容忽视;背水钢板的破坏模式主要为剪切冲塞破坏,背弹面穿孔存在绝热剪切效应;破片穿透背水钢板初期,会产生空泡和射流,空泡大小和射流强度与破片入水初速有关,而空泡形状和射流方向则受背水钢板的倾斜角度影响;破片穿透背水钢板后,在水中的运动轨迹会发生偏转,偏转方向与破片入水初速有关;由于水介质的动支撑作用和动能耗散效应,破片穿透背水钢板后的动能损失要大于穿透背空钢板的情形;水中初始冲击波的压力特性应考虑稀疏波的影响;相同初速下,破片侵彻垂直背水钢板引起的初始冲击波的峰值压力较侵彻倾斜背水钢板要大。
  • 图  1  垂直90°水箱结构(水箱Ⅰ)

    Figure  1.  Water tank with an incident angle of 90° (WT-Ⅰ)

    图  2  倾斜60°水箱结构(水箱Ⅱ)

    Figure  2.  Water tank with an incident angle of 60° (WT-Ⅱ)

    图  3  实验后弹体变形破坏形貌

    Figure  3.  Deformation and damage of projectiles after tests

    图  4  工况1背水钢板破坏形貌

    Figure  4.  Damage of water-backed steel plate in case 1

    图  5  工况2背水钢板绝热剪切形貌

    Figure  5.  Damage of adiabatic shear for water-backed steel plate in case 2

    图  6  工况1破片在水中的运动轨迹

    Figure  6.  Moving trajectory of fragment in water for case 1

    图  7  工况2破片在水中的运动轨迹

    Figure  7.  Moving trajectory of fragment in water for case 2

    图  8  工况3破片在水中的运动轨迹

    Figure  8.  Moving trajectory of fragment in water for case 3

    图  9  工况4破片在水中的运动轨迹

    Figure  9.  Moving trajectory of fragment in water for case 4

    图  10  稀疏波的传播示意图

    Figure  10.  Sketch of rarefaction wave propagation

    图  11  工况2中初始冲击波压力时程曲线

    Figure  11.  Pressure time history of incipient shock wave in case 2

    表  1  实验结果及主要参数

    Table  1.   Experimental results and main parameters

    工况 靶板厚度/mm 靶后介质 入射角/(°) 破片初速/(m·s-1) 破片余速/(m·s-1) 破坏情况
    1 4.98 水(水箱Ⅰ) 90 1 105.0 229.3 穿透
    2 4.96 水(水箱Ⅰ) 90 1 231.2 347.1 穿透
    3 4.98 水(水箱Ⅱ) 60 1 058.1 167.8 穿透
    4 4.94 水(水箱Ⅱ) 60 1 290.3 310.5 穿透
    5 4.92 空气 90 1 029.0 384.0 穿透
    6 4.96 空气 60 1 029.9 224.1 穿透
    下载: 导出CSV

    表  2  破片侵彻背水钢板各工况测点1~2的峰值压力测量结果

    Table  2.   Measured peak pressures of test points 1 and 2 for cases of water-bakced steel plates penetrated by fragments

    工况 破片初速v0/(m·s-1) 入射角/(°) 破片余速vr1/(m·s-1) 峰值压力P1max/MPa 峰值压力P2max/MPa
    1 1 105.0 90 286.0 6.184 4.580
    2 1 231.2 90 462.7 7.707 6.132
    3 1 058.1 60 202.9 4.322 3.894
    4 1 290.3 60 385.9 6.432 5.563
    下载: 导出CSV
  • [1] McMillen J H, Harvey E N.A spark shadowgraphic study of body waves in water[J].Journal of Applied Physics, 1946, 17(7):541-555. doi: 10.1063/1.1707751
    [2] Townsend D, Park N, Devall P M.Failure of fluid filled structures due to high velocity fragment impact[J].International Journal of Impact Engineering, 2003, 29(1-10):723-733. doi: 10.1016/j.ijimpeng.2003.10.019
    [3] Disimile P J, Swanson L A, Toy N.The hydrodynamic ram pressure generated by spherical projectiles[J].International Journal of Impact Engineering, 2009, 36(6):821-829. doi: 10.1016/j.ijimpeng.2008.12.009
    [4] Varas D, Lopez-Puente J, Zaera R.Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J].International Journal of Impact Engineering, 2009, 36(1):81-91. doi: 10.1016/j.ijimpeng.2008.04.006
    [5] Deletombe E, Fabis J, Dupas J, et al.Experimental analysis of 7.62 mm hydrodynamic ram in containers[J].Journal of Fluids and Structures, 2013, 37(2):1-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e00c764bc94ce20f638d9e7ceb94611e
    [6] 沈晓乐, 朱锡, 侯海量, 等.高速破片侵彻防护液舱试验研究[J].中国舰船研究, 2011, 6(3):12-15. doi: 10.3969/j.issn.1673-3185.2011.03.003

    Shen Xiaole, Zhu Xi, Hou Hailiang, et al.Experimental study on penetration properties of high velocity fragment into safety liquid cabin[J].Chinese Journal of Ship Research, 2011, 6(3):12-15. doi: 10.3969/j.issn.1673-3185.2011.03.003
    [7] 徐双喜, 吴卫国, 李晓彬, 等.舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J].爆炸与冲击, 2010, 30(4):395-400. http://www.bzycj.cn/CN/abstract/abstract8801.shtml

    Xu Shuangxi, Wu Weiguo, Li Xiaobin, et al.Protective effect of guarding fluid cabin bulkhead under attacking by explosion fragments[J].Explosion and Shock Waves, 2010, 30(4):395-400. http://www.bzycj.cn/CN/abstract/abstract8801.shtml
    [8] 李典, 朱锡, 侯海量, 等.高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J].爆炸与冲击, 2016, 36(1):1-8. http://www.bzycj.cn/CN/abstract/abstract9554.shtml

    Li Dian, Zhu Xi, Hou Hailiang, et al.Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J].Explosion and Shock Waves, 2016, 36(1):1-8. http://www.bzycj.cn/CN/abstract/abstract9554.shtml
    [9] 王晓强, 朱锡.高速钝头弹侵彻中厚金属靶板的机理研究[J].工程力学, 2010, 27(12):213-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017121300001763

    Wang Xiaoqiang, Zhu Xi.Study on high-velocity blunt-nosed projectiles penetrating moderate thickness metallic targets[J].Engineering Mechanics, 2010, 27(12):213-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017121300001763
    [10] 顾建农, 张志宏, 郑学龄, 等.弹体入水弹道研究综述[J].海军工程大学学报, 2000, 12(1):18-23. doi: 10.3969/j.issn.1009-3486.2000.01.004

    Gu Jiannong, Zhang Zhihong, Zheng Xueling, et al.A review of the body's water-entry ballistic research[J].Journal of Naval University of Engineering, 2000, 12(1):18-23. doi: 10.3969/j.issn.1009-3486.2000.01.004
    [11] 王礼立.应力波基础[M].北京:国防工业出版社, 2010.
    [12] Dear J P, Field J E.High-speed photography of surface geometry effects in liquid/solid impact[J].Journal of Applied Physics, 1988, 63(4):1015-1021. doi: 10.1063/1.340000
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  4039
  • HTML全文浏览量:  1382
  • PDF下载量:  353
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-12
  • 修回日期:  2016-09-06
  • 刊出日期:  2017-11-25

目录

    /

    返回文章
    返回