PTFE材料在高应变率冲击下的力学性能

李顺平 冯顺山 薛再清 涂建

李顺平, 冯顺山, 薛再清, 涂建. PTFE材料在高应变率冲击下的力学性能[J]. 爆炸与冲击, 2017, 37(6): 1046-1050. doi: 10.11883/1001-1455(2017)06-1046-05
引用本文: 李顺平, 冯顺山, 薛再清, 涂建. PTFE材料在高应变率冲击下的力学性能[J]. 爆炸与冲击, 2017, 37(6): 1046-1050. doi: 10.11883/1001-1455(2017)06-1046-05
Li Shunping, Feng Shunshan, Xue Zaiqing, Tu Jian. Mechanical properties of PTFE at high strain rate[J]. Explosion And Shock Waves, 2017, 37(6): 1046-1050. doi: 10.11883/1001-1455(2017)06-1046-05
Citation: Li Shunping, Feng Shunshan, Xue Zaiqing, Tu Jian. Mechanical properties of PTFE at high strain rate[J]. Explosion And Shock Waves, 2017, 37(6): 1046-1050. doi: 10.11883/1001-1455(2017)06-1046-05

PTFE材料在高应变率冲击下的力学性能

doi: 10.11883/1001-1455(2017)06-1046-05
基金项目: 

国家自然科学基金项目 11202028

高等学校博士学科点专项科研基金项目 20121101110012

详细信息
    作者简介:

    李顺平(1986—),女,博士后,lishp@14.calt.casc

  • 中图分类号: O347.3

Mechanical properties of PTFE at high strain rate

  • 摘要: 聚四氟乙烯(PTFE)在高速碰撞或者爆炸加载时的应变率可高达106 s-1,高应变率下PTFE材料的力学响应会对其材料性能产生较大影响。本文中采用压剪炮试验系统(PSPI)测试了PTFE材料在高应变率(105~106 s-1)下的压缩力学性能,实验中碳化钨(WC)飞片板以一定速度撞击由前靶板、试件和后靶板组成的三明治结构,并采用激光干涉仪记录后靶板自由面的速度变化。对实验结果处理后得到该PTFE材料的应力应变数值,并拟合得到应力应变曲线。本研究对PTFE/金属复合材料制成的动能侵彻体强度及其冲击碎化机理的分析具有指导意义。
  • 图  1  PSPI试验系统真空密闭测试箱及其剖面图

    Figure  1.  Vacuum chamber and its sectional drawing of PSPI facility setup

    图  2  后靶板自由面法向速度变化

    Figure  2.  Normal velocity of free surface of rear plate vs. time of PSPI test

    图  3  纵波在飞片板、前靶板和后靶板以及试件中的传播示意图

    Figure  3.  t-x diagram of longitudinal waves propagation in plates and sample

    图  4  声速随应力的变化

    Figure  4.  Longitudinal wave speed vs. pressure

    图  5  4 mm厚PTFE材料在105~106 s-1应变率下的应力应变曲线

    Figure  5.  Stress-strain profile for PTFE film of 4 mm thickness across strain rate 105~106 s-1 of PSPI test

    表  1  实验参数

    Table  1.   Experimental parameters for PSPI test

    实验号 h/mm hfront/mm hrear/mm hflyer/mm Ø/mm 靶板材料 v0/(m·s-1) 倾斜角/rad
    SL1301 0.4 4.016 4.026 4.021 50 WC#504 186.7 <0.7
    下载: 导出CSV
  • [1] Chou S C, Robertson K D, Rainey J H. The effect of strain rate and heat developed during deformation on the stress-strain curve of plastics[J]. Experimental Mechanics, 1973, 13(10):422-432. doi: 10.1007/BF02324886
    [2] Brown E N, Willms R B, Gray Ⅲ G T, et al. Influence of molecular conformation on the constitutive response of polyethylene: a comparison of HDPE, UHMWPE, and PEX[J]. Experimental Mechanics, 2007, 47(3):381-393. doi: 10.1007/s11340-007-9045-9
    [3] Walley S M, Field J E. Strain rate sensitivity of polymers in compression from low to high rates[J]. DYMAT Journal, 1994, 1(3):211-227.
    [4] Rae P J, Dattelbaum D M. The properties of poly (tetrafluoroethylene) (PTFE) in compression[J]. Polymer, 2004, 45(22):7615-7625. doi: 10.1016/j.polymer.2004.08.064
    [5] Khan A, Zhang H. Finite deformation of a polymer: experiments and modeling[J]. International Journal of Plasticity, 2001, 17(9):1167-1188. doi: 10.1016/S0749-6419(00)00073-5
    [6] Jennifer L J, Clive R S. Compressive properties of extruded polytetrafluoroethylene[J]. Polymer, 2007, 48(14):4184-4195. doi: 10.1016/j.polymer.2007.05.038
    [7] Zerilli F J, Armstrong R W. A constitutive equation for the dynamic deformation behavior of polymers[J]. Journal of Materials Science, 2007, 42(12):4562-4574. doi: 10.1007/s10853-006-0550-5
    [8] Kim K S, Rodney J C, Prashant Kumar. A combined normal- and transverse-displacement interferometer with an application to impact of ycutquartz[J]. Journal of Applied Physics, 1977, 48(10):4132. doi: 10.1063/1.323448
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4397
  • HTML全文浏览量:  1389
  • PDF下载量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-25
  • 修回日期:  2016-07-31
  • 刊出日期:  2017-11-25

目录

    /

    返回文章
    返回