玻璃纤维增强型复合材料圆筒高温高压动态冲击断口形貌分析

王加刚 余永刚 周良梁 曹韩学 刘溪

王加刚, 余永刚, 周良梁, 曹韩学, 刘溪. 玻璃纤维增强型复合材料圆筒高温高压动态冲击断口形貌分析[J]. 爆炸与冲击, 2017, 37(6): 1107-1112. doi: 10.11883/1001-1455(2017)06-1107-06
引用本文: 王加刚, 余永刚, 周良梁, 曹韩学, 刘溪. 玻璃纤维增强型复合材料圆筒高温高压动态冲击断口形貌分析[J]. 爆炸与冲击, 2017, 37(6): 1107-1112. doi: 10.11883/1001-1455(2017)06-1107-06
Wang Jiagang, Yu Yonggang, Zhou Liangliang, Cao Hanxue, Liu Xi. Fracture analysis of glass fiber reinforced composite material under high temperature and pressure[J]. Explosion And Shock Waves, 2017, 37(6): 1107-1112. doi: 10.11883/1001-1455(2017)06-1107-06
Citation: Wang Jiagang, Yu Yonggang, Zhou Liangliang, Cao Hanxue, Liu Xi. Fracture analysis of glass fiber reinforced composite material under high temperature and pressure[J]. Explosion And Shock Waves, 2017, 37(6): 1107-1112. doi: 10.11883/1001-1455(2017)06-1107-06

玻璃纤维增强型复合材料圆筒高温高压动态冲击断口形貌分析

doi: 10.11883/1001-1455(2017)06-1107-06
详细信息
    作者简介:

    王加刚(1979—),男,博士研究生

    通讯作者:

    余永刚, yyg801@njust.edu.cn

  • 中图分类号: O346.1

Fracture analysis of glass fiber reinforced composite material under high temperature and pressure

  • 摘要: 为了探究埋头弹火炮所用的玻璃纤维增强型(GFR)复合材料药筒在高温高压瞬态冲击条件下的结构强度,分别开展了圆筒静态整体拉伸和动态高温高压冲击实验,从拉伸/瞬态超高压破坏试样断口部分截取断口样品,在扫描电子显微镜下观察断口形貌,得到GFR复合材料在两种不同受力情况下的失效模式。结果表明:室温整体单轴拉伸断裂时,GFR复合材料的断面与轴线夹角接近45°, 失效模式为环氧树脂基体破坏和纤维拔出;在高压瞬态冲击作用下,试样主要失效模式为纤维的脆性断裂,同时由于火药燃烧产生的高温燃气使部分环氧树脂基体碳化,纤维与基体界面结合力降低,少数纤维熔融或软化附着在断口上,部分软化的纤维因瞬态超高压被拉细。
  • 图  1  室温整体拉伸实验

    Figure  1.  Overall tensile experiment at ambient temperature

    图  2  高温高压瞬态冲击试样

    Figure  2.  Sample of transient ultrahigh pressure experiment

    图  3  高温高压瞬态冲击压力曲线

    Figure  3.  Pressure curve in thin-walled cylinder

    图  4  玻璃纤维增强型复合材料轴向拉伸断口

    Figure  4.  Fracture appearance of GFR composite material specime in overall tensile experiment

    图  5  室温单轴拉伸断口形貌

    Figure  5.  Uniaxial tensile fracture morphology at room temperature

    图  6  玻璃纤维增强型复合材料高压瞬态冲击断口

    Figure  6.  Fracture appearance of GFR composite material specimen in transient blast experiment

    图  7  高温高压瞬态冲击条件下的典型断口形貌

    Figure  7.  Observation of typical fracture surface morphology by SEM

  • [1] 李晓琴, 张巨伟.纤维缠绕复合材料管道的应力分析[J].中国化工装备, 2008, 10(2):106-108. http://d.old.wanfangdata.com.cn/Periodical/syhgyy200804031

    Li Xiaoqin, Zhang Juwei.Stress analysis of fiber reinforced polymer pipes[J].China Chemical Industry Equipment, 2008, 10(2):106-108. http://d.old.wanfangdata.com.cn/Periodical/syhgyy200804031
    [2] Guynn E G, Ochoa O O, Bradley W L.Aparametric study of variable that affect fiber microbuckling initiation in composite laminates:Analyses[J].Journal of Composite Materials, 1992, 26(11):1594-1616. doi: 10.1177/002199839202601103
    [3] Jumahat A, Soutis C, Jones F R, et al.Fracture mechanisms and failure analysis of carbon fiber/toughened epoxy composites subjected to compressive loading[J].Composite Structures, 2010, 92(2):295-305. doi: 10.1016/j.compstruct.2009.08.010
    [4] Miller A G, Wingert A L.Fracture surface characterization of commercial graphite/epoxy systems[M].Philadelphia PA:American Society for Testing and Materials, 1979:223-296.
    [5] Grove R A, Smith B W.Compendium of post-failure analysis techniques for composite materials[R].Seattle, WA: Boeing Military Aircraft Co, 1986.
    [6] Gary G, Zhao H.Dynamic testing of fibre polymer matrix composite plates under in-plane compression[J].Composites:A, 2000, 31(8):835-840. doi: 10.1016/S1359-835X(00)00026-9
    [7] 王越, 张凤玲.玻璃纤维增强尼龙66拉伸/冲击断口分析[J].测控技术, 2011, 30(增刊):375-377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7595978

    Wang Yue, Zhang Fengling.Fracture analysis of glass fiber reinforced nylon 66 under tensile impact test[J].Measurement & Control Technology, 2011, 30(suppl):375-377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7595978
    [8] 牟善彬, 宋显辉, 苏小萍.玻璃纤维处理后复合材料强度的变化及微观特征[J].北京科技大学学报, 2001, 23(增刊):23-24. http://d.old.wanfangdata.com.cn/Conference/3207252

    Mou Shanbin, Song Xianhui, Su Xiaoping.Strength variation and micro-characteristics of composites after the treatment of glass fibers[J].Journal of University of Science and Technology Beijing, 2001, 23(suppl):23-24. http://d.old.wanfangdata.com.cn/Conference/3207252
    [9] 陈煊, 程礼, 陈卫, 等.二维C/SiC复合材料准静态和动态拉伸力学性能[J].复合材料学报, 2016, 33(12):2846-2853. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhclxb201612020

    Chen Xuan, Cheng Li, Chen Wei, et al.Quasi-static and dynamic tensile mechanical properties of two dimensional C/SiC composites[J].Acta Materiae Compositae Sinica, 2016, 33(12):2846-2853. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhclxb201612020
    [10] 严世成, 梁克瑞.玻璃钢/复合材料的发展、应用与展望[J].广东化工, 2014, 41(24):72-73. doi: 10.3969/j.issn.1007-1865.2014.24.038

    Yan Shicheng, Liang Kerui.Development, application and Prospect of FRP/composite[J].Guangdong Chemical Industry, 2014, 41(24):72-73. doi: 10.3969/j.issn.1007-1865.2014.24.038
    [11] 吴如艳, 陈凤舞.玻璃钢材料发展现状综述[J].河南科技, 2013(2):120, 127. http://d.old.wanfangdata.com.cn/Periodical/hnkj201304106
    [12] Chamis C C, Minnetyan L.Defect/damage tolerance of pressurized fiber composite shells[J].Composite Structure, 2001, 51(2):159-168. doi: 10.1016/S0263-8223(00)00141-0
    [13] Verijenko V E, Adalis L, Tabakov P Y.Stress distribution in continuously heterogeneous thick laminated pressure vessels[J].Composite Structures, 2001, 54(2):371-377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210302721
    [14] 陈鹏万, 黄风雷.含能材料损伤理论及应用[M].北京:北京理工大学出版社, 2006:1-2.
    [15] 刘政, 刘小梅.短纤维增强铝硅合金复合材料的组织与断口形貌分析[J].兵器材料科学与工程, 2002, 25(3):22-25. doi: 10.3969/j.issn.1004-244X.2002.03.008

    Liu Zheng, Liu Xiaomei.Analysis on structure and fracture morphology of short fiber reinforced aluminum-silicon alloy composites[J].Ordnance Material Science and Engineering, 2002, 25(3):22-25. doi: 10.3969/j.issn.1004-244X.2002.03.008
    [16] 张厚江, 陈五一, 陈鼎昌.碳纤维复合材料(CFRP)孔壁的微观形态[J].复合材料学报, 2000, 17(2):98-101. doi: 10.3321/j.issn:1000-3851.2000.02.022

    Zhang Houjiang, Chen Wuyi, Chen Dingchang.Microstructure of the hole surface of CFRP[J].Acta Materiae Compositae Sinica, 2000, 17(2):98-101. doi: 10.3321/j.issn:1000-3851.2000.02.022
    [17] 刘芳, 杨柳.纤维增强复合材料的冲击拉伸力学性能[J].纤维复合材料, 2004, 21(4):41-42. doi: 10.3969/j.issn.1003-6423.2004.04.012

    Liu Fang, Yang Liu.The researches on fiber-reformed composites impact tensile performance[J].Fiber Composites, 2004, 21(4):41-42. doi: 10.3969/j.issn.1003-6423.2004.04.012
    [18] 夏源明, 杨报昌, 贾德新, 等.摆锤式杆杆型冲击拉伸装置和低温动态测试技术[J].实验力学, 1989, 4(1):57-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000253173

    Xia Yuanming, Yang Baochang, Jia Dexin, et al.Rod-type impact tensile test device of the pendulum bar and low temperature dynamic testing technology[J].Journal of Experimental Mechanics, 1989, 4(1):57-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000253173
    [19] 易法军, 梁军, 孟松鹤, 等.防热复合材料的烧蚀机理与模型研究[J].固体火箭技术, 2000, 23(4):48-56. http://d.old.wanfangdata.com.cn/Periodical/gthjjs200004012

    Yi Fajun, Liang Jun, Meng Songhe, et al.Study on ablation mechanism and models of heatshield composites[J].Journal of Solid Rocket Technology, 2000, 23(4):48-56. http://d.old.wanfangdata.com.cn/Periodical/gthjjs200004012
  • 加载中
图(7)
计量
  • 文章访问数:  4192
  • HTML全文浏览量:  1259
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-11
  • 修回日期:  2017-01-22
  • 刊出日期:  2017-11-25

目录

    /

    返回文章
    返回