TiNi柱壳在不同约束下的横向冲击实验

张科 唐志平

张科, 唐志平. TiNi柱壳在不同约束下的横向冲击实验[J]. 爆炸与冲击, 2015, 35(3): 296-303. doi: 10.11883/1001-1455-(2015)03-0296-08
引用本文: 张科, 唐志平. TiNi柱壳在不同约束下的横向冲击实验[J]. 爆炸与冲击, 2015, 35(3): 296-303. doi: 10.11883/1001-1455-(2015)03-0296-08
Zhang Ke, Tang Zhi-ping. Experimental study of TiNi tubes under radial impact with and without lateral constraint[J]. Explosion And Shock Waves, 2015, 35(3): 296-303. doi: 10.11883/1001-1455-(2015)03-0296-08
Citation: Zhang Ke, Tang Zhi-ping. Experimental study of TiNi tubes under radial impact with and without lateral constraint[J]. Explosion And Shock Waves, 2015, 35(3): 296-303. doi: 10.11883/1001-1455-(2015)03-0296-08

TiNi柱壳在不同约束下的横向冲击实验

doi: 10.11883/1001-1455-(2015)03-0296-08
基金项目: 国家自然科学基金项目(10872196)
详细信息
    作者简介:

    张科(1986—), 男, 博士研究生

    通讯作者:

    唐志平, zptang@ustc.edu.cn

  • 中图分类号: O382

Experimental study of TiNi tubes under radial impact with and without lateral constraint

  • 摘要: 为了解TiNi柱壳横向压缩力学性能以制造可重复使用抗冲吸能装置, 对有、无侧向约束的TiNi柱壳进行了横向冲击实验。利用改进的霍普金森压杆装置(SHPB), 配套波形分离方法, 实现了较长时间(~3 ms)的波形测量, 获得了TiNi柱壳在动态加载下的载荷压缩量曲线。通过高速摄影, 捕捉了柱壳的动态变形过程。结果表明, 无约束试件具有优良的可恢复变形能力, 承载力平台段特征明显。侧向约束的引入, 可以有效提高柱壳的承载力和耗能能力, 可以承受更高速度的冲击。选择合适的约束组合, 可望同时实现较大压缩行程和高耗能, 制造实用的抗冲吸能装置。
  • 图  1  实验装置简图

    Figure  1.  Schematic of experimental arrangement

    图  2  试件及约束

    Figure  2.  Specimen and lateral constraint

    图  3  透射杆示意图

    Figure  3.  Schematic of transmission bar

    图  4  波形处理实例

    Figure  4.  Example of waveform processing

    图  5  无侧向约束试件的载荷-压缩曲线

    Figure  5.  Load-compression curves without constraint

    图  6  ss-3的高速摄影照片

    Figure  6.  High speed CCD images of ss-3

    图  7  ss-4的力学响应结果

    Figure  7.  Mechanical response of ss-4

    图  8  ss-4高速摄影照片

    Figure  8.  High speed CCD images of ss-4

    图  9  有侧向约束试件的力学响应结果

    Figure  9.  Mechanical response of specimen with lateral constraint

    图  10  ff-3的高速摄影照片

    Figure  10.  High speed CCD images of ff-3

    图  11  无约束试件动静态实验结果比较

    Figure  11.  Comparsion of quasi-static and dynamic compression without lateral constraint

    图  12  有约束试件动静态实验结果比较

    Figure  12.  Comparsion of quasi-static and dynamic compression with lateral constraint

    图  13  不同约束下的抗冲吸能性能比较

    Figure  13.  Comparison of shock resistance and energy absorption features under various constraints

    表  1  实验参数和结果

    Table  1.   Experimental parameters and results under radial impact

    No. v0/(m·s-1) δmax/mm δmax/D Fmax/N E0/J Ed/J χ/(J·g-1) η/%
    ss-1 3.17 1.59 0.199 287 0.347 0.038 0.58 10.9
    ss-2 3.70 2.05 0.256 309 0.473 0.086 0.79 18.2
    ss-3 4.69 2.91 0.364 368 0.759 0.162 1.26 21.3
    ss-4 6.73 4.20 0.530 659 1.563 0.890 2.60 57.0
    ff-1 3.83 1.08 0.135 748 0.506 0.124 0.84 24.5
    ff-2 4.74 1.38 0.173 854 0.775 0.238 1.29 30.7
    ff-3 5.28 1.50 0.188 1 037 0.962 0.338 1.60 35.1
    下载: 导出CSV
  • [1] 余同希.利用金属塑性变形原理的碰撞能量吸收装置[J].力学进展, 1986, 16(1): 28-39.

    Yu Tong-xi. Impact energy absorbing devices based upon the plastic deformation of metallic elements[J]. Advances in Mechanics, 1986, 16(1): 28-39.
    [2] Khan M M, Lagoudas D C, Mayes J J, et al. Pseudo-elastic SMA spring element for passive vibration isolation: PartⅠ: Modeling[J]. Journal of Intelligent Material Systems and Structures, 2004(15): 415-441.
    [3] Lagoudas D C, Khan M M, Mayes J J. Pseudo-elastic SMA Spring element for passive vibration isolation: PartⅡ: Simulations and experimental correlations[J]. Journal of Intelligent Material Systems and Structures, 2004(15): 443-470.
    [4] Rivin E I, Sayal G, Johal P R S. "Giant Superelasticity Effect"in NiTi superelastic materials and its applications[J]. Journal of Materials in Civil Engineering, 2006, 18(6): 851-857. doi: 10.1061/(ASCE)0899-1561(2006)18:6(851)
    [5] Dong Yin-sheng, Xiong Jiu-lang, Li Ai-qun, et al. Evaluation of properties for a passive damping device with TiNirings as dissipating elemen[J]. Journal of Southeast University: English Edition, 2005, 21(3): 310-313.
    [6] Zhang Ke, Zhang Hui-jie, Tang Zhi-ping. Experimental study of thin-walled TiNi tubes under radial quasi-static compression[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(18): 2113-2126. doi: 10.1177/1045389X11426344
    [7] 徐薇薇.几种基本构件的冲击相变响应的数值模拟研究[D].合肥: 中国科学技术大学, 2009: 131-158.
    [8] 唐志平, 张会杰.相变柱壳的横向冲击特性[J].爆炸与冲击, 2013, 33(1): 47-53.

    Tang Zhi-ping, Zhang Hui-jie. Radial impact responses of cylindrical shells with phase transformation[J]. Explosion and Shock Waves, 2013, 33(1): 47-53.
    [9] 巫绪涛, 胡时胜, 张芳容.两点应变测量法在SHPB测量技术上的运用[J].爆炸与冲击, 2003, 23(4): 309-312.

    Wu Xu-tao, Hu Shi-sheng, Zhang Fang-rong. Application of two-point strain measurement to the SHPB technique[J]. Explosion and Shock Waves, 2003, 23(4): 309-312.
    [10] Lundberg B, Carlsson J, Sundin K G. Analysis of elastic-waves in nonuniform rods from 2-point strain-measurement[J]. Journal of Sound and Vibration, 1990, 137(3): 483-493. doi: 10.1016/0022-460X(90)90813-F
    [11] Park S W, Zhou M. Separation of elastic waves in split Hopkinson bars using one-point strain measurements[J]. Experimental Mechanics, 1999, 39(4): 287-294. doi: 10.1007/BF02329807
    [12] Zhao H, Gary G. A new method for the separation of waves: Application to the SHPB technique for an unlimited duration of measurement[J]. Journal of The Mechanics and Physics of Solids, 1997, 45(7): 1185-1202. doi: 10.1016/S0022-5096(96)00117-2
    [13] Saadat S, Salichs J, Nooriet M, et al. An overview of vibration and seismic applications of NiTi shape memory alloy[J]. Smart Materials & Structures, 2002, 11(2): 218-229.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  2559
  • HTML全文浏览量:  293
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-28
  • 修回日期:  2015-01-20
  • 刊出日期:  2015-05-25

目录

    /

    返回文章
    返回