含弱约束端面短管道油气爆炸特性实验研究

杜扬 王世茂 袁广强 齐圣 王波 李国庆 李阳超

杜扬, 王世茂, 袁广强, 齐圣, 王波, 李国庆, 李阳超. 含弱约束端面短管道油气爆炸特性实验研究[J]. 爆炸与冲击, 2018, 38(2): 465-472. doi: 10.11883/bzycj-2015-0242
引用本文: 杜扬, 王世茂, 袁广强, 齐圣, 王波, 李国庆, 李阳超. 含弱约束端面短管道油气爆炸特性实验研究[J]. 爆炸与冲击, 2018, 38(2): 465-472. doi: 10.11883/bzycj-2015-0242
DU Yang, WANG Shimao, YUAN Guangqiang, QI Sheng, WANG Bo, LI Guoqing, LI Yangchao. Experimental study of fuel-air mixture explosion characteristics in the short pipe containing weakly confined face at the end[J]. Explosion And Shock Waves, 2018, 38(2): 465-472. doi: 10.11883/bzycj-2015-0242
Citation: DU Yang, WANG Shimao, YUAN Guangqiang, QI Sheng, WANG Bo, LI Guoqing, LI Yangchao. Experimental study of fuel-air mixture explosion characteristics in the short pipe containing weakly confined face at the end[J]. Explosion And Shock Waves, 2018, 38(2): 465-472. doi: 10.11883/bzycj-2015-0242

含弱约束端面短管道油气爆炸特性实验研究

doi: 10.11883/bzycj-2015-0242
基金项目: 

国家自然科学基金项目 51276195

国家自然科学基金项目 51704301

重庆市研究生科研创新项目 CYB17150

详细信息
    作者简介:

    杜扬(1958-),男,教授,博士生导师

    通讯作者:

    王世茂, wangshim1990@163.com

  • 中图分类号: O381

Experimental study of fuel-air mixture explosion characteristics in the short pipe containing weakly confined face at the end

  • 摘要: 构建了长径比为4的含弱约束端面的短管道实验系统,对短管道油气爆炸特性进行了实验研究,得到油气爆炸压力和火焰的变化规律。实验结果表明:(1)受破膜、泄流、外部爆炸等因素的影响,含弱约束端面短管道油气爆炸具有多个超压峰值,并产生Helmholtz振荡;(2)弱约束端面对管道内外爆炸超压均具有增强作用,内部最大超压为24.23 kPa,外部最大超压为5.45 kPa,分别为无约束条件下的4.9和2.7倍;(3)火焰变化过程可划分为“层流燃烧-突变加速-外部爆炸-衰弱熄灭”4个阶段;由于湍流、界面不稳定、斜压效应等因素的影响,火焰在突变加速和外部爆炸两个阶段会发生剧烈的拉伸褶皱和卷曲变形,形成Tulip火焰和蘑菇云状火焰。(4)在层流燃烧阶段,弱约束端面对火焰速度有减弱作用,此阶段最大火焰速度为3.5 m/s,相比于无约束时减弱了41.3%;而在突变加速和外部爆炸阶段,弱约束端面破坏产生的强泄流对火焰传播速度有增强作用,此阶段最大火焰速度为80.2 m/s,相比于无约束时增强了106.2%。(5)不同初始油气浓度条件下火焰发展模式具有显著差异,在低浓度和中浓度条件下火焰能够冲出弱约束端面形成外部火球,而在高浓度条件下,火焰无法冲出管道。
  • 图  1  实验系统示意图

    Figure  1.  Experimental system

    图  2  管道内部爆炸超压与时间的关系

    Figure  2.  Relationship curves of time and internal overpressure

    图  3  管道外部爆炸超压与时间的关系

    Figure  3.  Relationship curves of time and external overpressure

    图  4  含弱约束端火焰形态变化规律

    Figure  4.  Morphological changes of flame in the tube with a weakly confined face

    图  5  无约束火焰形态变化规律

    Figure  5.  Morphological changes of flame in the tube without confined structure

    图  6  火焰速度随时间变化关系

    Figure  6.  Variation of flame speed with time

    图  7  不同油气体积浓度下的油气爆燃火焰发展特性

    Figure  7.  Flame development at different fuel-air mixture concentration

    表  1  管道内部爆炸特性对比

    Table  1.   Comparison of internal explosion characteristics

    端部条件 pb/kPa pfv/kPa tfv/s pext/kPa text/s pref/kPa 振荡期 Δt/s T/s
    有约束 24.23 22.07 0.047 22.07 0.047 6.71 0.009 0.003
    无约束 - 1.28 0.016 4.97 0.051 - - -
    注:pb为破膜超压峰值;pfv为泄流冲击超压峰值;tfv为泄流冲击超压峰值时刻;pext为外部爆炸超压峰值;text为外部爆炸超压峰值时刻;pref为回流燃烧超压;Δt为震荡持续时间;T为振荡周期。
    下载: 导出CSV

    表  2  管道外部爆炸特性对比

    Table  2.   Comparison of external explosion characteristics

    端部条件 pb/kPa pext/kPa text/s 振荡期 Δt/s T/s
    有约束 1.94 5.45 0.048 0.009 0.003
    无约束 - 2.02 0.053 - -
    下载: 导出CSV

    表  3  不同油气体积分数下的油气爆燃火焰发展特性

    Table  3.   Flame development at different oil volume fraction

    CCH/
    %
    火焰发展类型
    封闭爆炸阶段 开口发展阶段 衰弱阶段
    1.07 A D G
    1.23 A D G
    1.50 A E G
    1.83 B F G
    2.07 B F G
    2.20 B E G
    2.45 C E G
    2.60 C - -
    2.76 C - -
    2.90 C - -
    3.15 Null Null Null
    注:A-光滑椭球形层流火焰,B-鳞状褶皱椭球层流火焰,C-卷曲絮状火焰,D-射流火焰,E-球形火焰,F蘑菇云状火焰,G-衰弱熄灭,Null-未燃
    下载: 导出CSV
  • [1] 王引群.矿井瓦斯爆炸火焰传播试验研究[J].山西煤炭, 2012(9):52-53. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sxmt201209019&dbname=CJFD&dbcode=CJFQ

    WANG Yinqun. Experimental study on flame propagation of gas explosion in mines[J]. Shanxi Coal, 2012(9):52-53. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sxmt201209019&dbname=CJFD&dbcode=CJFQ
    [2] 温小萍, 武建军, 解茂昭.瓦斯爆炸火焰结构与压力波的耦合规律[J].化工学报, 2013(10):3871-3877. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hgsz201310057&dbname=CJFD&dbcode=CJFQ

    WEN Xiaoping, WU Jianjun, XIE Maozhao. Coupled relationship between flame structure and pressure wave of gas explosion[J]. CIESC Journal, 2013(10):3871-3877. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hgsz201310057&dbname=CJFD&dbcode=CJFQ
    [3] CAO W, Gao W, LIANG J, et al. Flame-propagation behavior and a dynamic model for the thermal-radiation effects in coal-dust explosions[J]. Journal of Loss Prevention in the Process Industries, 2014, 29(1):65-71. http://www.sciencedirect.com/science/article/pii/S0950423014000254
    [4] KIM W K, MOGI T, DOBASHI R. Flame acceleration in unconfined hydrogen/air deflagrations using infrared photography[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):1501-1505. doi: 10.1016/j.jlp.2013.09.009
    [5] NISHIMURA I, MOGI T, DOBASHI R. Simple method for predicting pressure behavior during gas explosions in confined spaces considering flame instabilities[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2):351-354. doi: 10.1016/j.jlp.2011.08.009
    [6] SNOEYS J, GOING J E, TAVEAU J M R. Advances in dust explosion protection techniques: flameless venting[J]. Procedia Engineering, 2012, 45(3):403-413. http://www.sciencedirect.com/science/article/pii/S1877705812031906
    [7] YAN X, YU J, GAO W. Flame behaviors and pressure characteristics of vented dust explosions at elevated static activation overpressures[J]. Journal of Loss Prevention in the Process Industries, 2015, 33:101-108. http://www.sciencedirect.com/science/article/pii/S0950423014002058
    [8] TOMLIN G, JOHNSON D M, CRONIN P, et al. The effect of vent size and congestion in large-scale vented natural gas/air explosions[J]. Journal of Loss Prevention in the Process Industries, 2015, 35:169-181. doi: 10.1016/j.jlp.2015.04.014
    [9] MOLKOV V, MAKAROV D. LES modelling of an unconfined large-scale hydrogen-air deflagration[J]. Journal of Physics D: Applied Physics, 2006, 39(18):4366-4376. https://www.mendeley.com/research-papers/les-modelling-unconfined-largescale-hydrogenair-deflagration/
    [10] QIAO A, ZHANG S. Advanced CFD modeling on vapor dispersion and vapor cloud explosion[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6):843-848. doi: 10.1016/j.jlp.2010.06.006
    [11] DADASHZADEH M, KHAN F, HAWBOLDT K, et al. An integrated approach for fire and explosion consequence modelling[J]. Fire Safety Journal, 2013, 61(5):324-337. http://www.sciencedirect.com/science/article/pii/S0379711213001586
    [12] TOMIZUKA T, KUWANA K, SHIMIZU K, et al. Estimation of turbulent flame speed during DME/air premixed gaseous explosions[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2):369-373. doi: 10.1016/j.jlp.2011.09.004
    [13] 齐圣. 受限空间油气爆燃及其细水雾抑制实验研究与数值仿真[D]. 重庆: 解放军后勤工程学院, 2014.
    [14] FAKANDU B M, ANDREWS G E, PHYLAKTOU H N. Vent burst pressure effects on vented gas explosion reduced pressure[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 429-438. doi: 10.1016/j.jlp.2015.02.005
    [15] CHAO J, BAUWENS C R, DOROFEEV S B. An analysis of peak overpressures in vented gaseous explosions[J]. Proceedings of the Combustion Institute, 2011, 33(2):2367-2374. doi: 10.1016/j.proci.2010.06.144
    [16] 姜孝海. 泄爆外流场的动力学机理研究[D]. 南京: 南京理工大学, 2004. http://cdmd.cnki.com.cn/Article/CDMD-10288-2005031547.htm
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  5229
  • HTML全文浏览量:  1994
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-25
  • 修回日期:  2016-10-03
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回