电磁脉冲驱动套筒内爆压缩磁化靶研究

刘斌 李成 王瑞星 曹启伟 杨显俊

刘斌, 李成, 王瑞星, 曹启伟, 杨显俊. 电磁脉冲驱动套筒内爆压缩磁化靶研究[J]. 爆炸与冲击, 2018, 38(3): 688-695. doi: 10.11883/bzycj-2016-0133
引用本文: 刘斌, 李成, 王瑞星, 曹启伟, 杨显俊. 电磁脉冲驱动套筒内爆压缩磁化靶研究[J]. 爆炸与冲击, 2018, 38(3): 688-695. doi: 10.11883/bzycj-2016-0133
LIU Bin, LI Cheng, WANG Ruixing, CAO Qiwei, YANG Xianjun. Electromagnetic pulse driven liner implosion and compression of magnetized target[J]. Explosion And Shock Waves, 2018, 38(3): 688-695. doi: 10.11883/bzycj-2016-0133
Citation: LIU Bin, LI Cheng, WANG Ruixing, CAO Qiwei, YANG Xianjun. Electromagnetic pulse driven liner implosion and compression of magnetized target[J]. Explosion And Shock Waves, 2018, 38(3): 688-695. doi: 10.11883/bzycj-2016-0133

电磁脉冲驱动套筒内爆压缩磁化靶研究

doi: 10.11883/bzycj-2016-0133
详细信息
    作者简介:

    刘斌(1991-), 男, 硕士

    通讯作者:

    杨显俊, yang_xianjun@iapcm.cn

  • 中图分类号: O532.1

Electromagnetic pulse driven liner implosion and compression of magnetized target

  • 摘要: 采用磁流体方程和有限差分法,对内爆过程中高能量密度状态下的磁场对带电粒子和压缩过程的作用机制进行研究。结果显示:内爆过程中的各项参数为电子离子温度(50 keV)、压强(1 TPa)、粒子数密度(1024 cm-3)。套筒材料对约束时间、点火条件有重要影响;同时当磁感应强度大于5 T时,电子热传导系数比无磁场时减小2个数量级,离子热传导系数也出现了明显下降,在压缩峰值处,磁感应强度超过5 T时α粒子能量沉积密度比磁感应强度为0和1 T时相对增加约200倍。磁化在一定程度上也会阻碍内爆压缩过程。
  • 图  1  燃料等压拼装图

    Figure  1.  Illustration of pressure fuel assembly

    图  2  差分网格划分[16]

    Figure  2.  Differential meshing[16]

    图  3  半径流线图

    Figure  3.  Radial flow chart

    图  4  电子离子升温图

    Figure  4.  Electron and ion heating diagram

    图  5  燃料密度和压强时程曲线

    Figure  5.  Histories of fuel density and pressure

    图  6  磁场对电子热传导系数的影响

    Figure  6.  Effect of magnetic field on the electron heat conduction coefficient

    图  7  磁场对离子热传导系数的影响

    Figure  7.  Effect of magnetic field on the ion heat conduction coefficient

    图  8  磁场对α粒子能量沉积的影响

    Figure  8.  Effect of magnetic field on the alpha particle energy deposition

    图  9  等离子体加热能量随磁场的变化

    Figure  9.  Plasma heating energy varying with the change of magnetic field

    图  10  内爆压缩做功示意图

    Figure  10.  Illustration of internal-explosion-compression work

  • [1] TACCETTI J M, INTRATOR T P, WURDEN G A, et al. FRX-L:A field-reversed configuration plasma injector for magnetized target fusion[J]. Review of Scientific Instruments, 2003, 74(10):4314-4323. doi: 10.1063/1.1606534
    [2] DEGNAN J H, AMDAHL D J, Domonkos M, et al. Recent Magneto-inertial fusion experiments on FRCHX[C]//24nd IAEA Fusion Energy Conference. San Diego: 2012.
    [3] WUEDEN G A, GRABOWSKI T C, DEGNAN J H, et al. Increased FRC lifetimes using a longer trap[C]//Bulletin of the American Physical Society (APS Meeting), 2013: 58.
    [4] SLUTZ S A, HERRMANN M C, VESEY R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17(5):263-52.
    [5] CUNEO M E, HERRMANN M C, SINARS D B, et al. Magnetically driven implosions for inertial confinement fusion at sandia national laboratories[J]. IEEE Transactions on Plasma Science, 2012, 40(12):3222-3245. doi: 10.1109/TPS.2012.2223488
    [6] GOTCHEV O V, KNAUER J P, CHANG P Y, et al. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas[J]. Review of Scientific Instruments. 2009, 80(4):495. http://cat.inist.fr/?aModele=afficheN&cpsidt=21489875
    [7] HOHENBERGER M, CHANG P Y, FIKSEL G, et al. Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Lasera[J]. Physics of Plasmas, 2012, 19(5):139. https://www1.psfc.mit.edu/research/hedp/Home%20Page/Papers/Hohenberger_PoP-2012.pdf
    [8] LABERGE M. Experimental results for an acoustic driver for MTF[J]. Journal of Fusion Energy, 2009, 28(2):179-182. doi: 10.1007/s10894-008-9181-y
    [9] HSU S C, WITHERSPOON F D, CASSIBRY J T, et al. Overview of the plasma liner experiment (PLX)[C]//Bulletin of the American Physical Society (APS Meeting), 2009: 56.
    [10] GARANIN S F, MAMYSHEC V I, YAKUBOV V B. The MAGO system:Current status[J]. Plasma Science, IEEE Transactions, 2006, 34(5):2273-2278. doi: 10.1109/TPS.2006.878368
    [11] 孙奇志, 方东凡, 刘伟, 等."荧光-1"实验装置物理设计[J].物理学报, 2013, 62(7):000507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201307074

    SUN Qizhi, FANG Dongfan, LIU Wei, et al. Physical design of the "Ying-Guang 1" device[J]. Acta Physica Sinica, 2013, 62(7):000507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201307074
    [12] 李璐璐, 张华, 杨显俊.反场构型的二维磁流体力学描述[J].物理学报, 2014, 63(16):165202. doi: 10.7498/aps.63.165202

    LI Lulu, ZHANG Hua, YANG Xianjun.Two-dimensional magneto-hydrodynamic description of field reversed configuration[J]. Acta Physica Sinica, 2014, 63(16):165202. doi: 10.7498/aps.63.165202
    [13] GIBBS W W. Triple-threat method sparks hope for fusion[J]. Natrue, 2014, 505(7481):9-10. https://www.scientificamerican.com/article/triple-threat-method-sparks-hope-for-nuclear-fusion-energy/
    [14] GOMEZ M R, SLUTZ S A, SEFKOW A B, et al. Experimental verification of the magnetized liner inertial fusion (MagLIF) concept[C]//IEEE International Conference on Plasma Sciences, 2014: 1.
    [15] 邓建军, 王勐, 谢卫平, 等.面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术[J].强激光与粒子束, 2014, 26(10):100201. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_qjgylzs201410001

    DENG Jianjun, WANG Meng, XIE Weiping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor[J].High Power Laser and Particle Beams, 2014, 26(10):100201. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_qjgylzs201410001
    [16] BASKO M. A1-D 3-T hydrodynamic code for simulating ICF targets driven by fast ion beams[R]. Version 4. Institute for Theoretical and Experimental Physics, Moscow, 2001.
    [17] 邓爱东, 张华, 杨显俊.电磁驱动产生超强磁场的参数优化设计[J].高压物理学报, 2015, 29(2):123-128. doi: 10.11858/gywlxb.2015.02.006

    DENG Aidong, ZHANG Hua, YANG Xianjun. Parameters optimization of the strong magnetic gield generation driven by electromagnetic force[J]. Chinese Journal of High Pressure Physics, 2015, 29(2):123-128. doi: 10.11858/gywlxb.2015.02.006
    [18] 宁成, 丰志兴, 薛创.Z箍缩驱动动态黑腔中的基本能量转移特征[J].物理学报, 2014, 63(12):125208. doi: 10.7498/aps.63.125208

    NING Cheng, FENG Zhixing, XUE Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch[J]. Acta Physica Sinica, 2014, 63(12):125208. doi: 10.7498/aps.63.125208
    [19] ANDREAS J K. Magnetized cylindrical implosions driven by heavy ion beams[R]. Max Planck Institute of Quantum Optics, 2001.
    [20] 谷同祥, 安恒斌, 刘兴平, 等.迭代法和预处理技术:上册[M].北京:科学出版社, 2015:78-90.
    [21] MEYER-TER-VEHN J. 惯性聚变物理[M]. 沈柏飞, 译. 北京: 科学出版社, 2008: 28-31.
    [22] BASKO M M, KEMP A J, MEYER-TER-VEHN J. Ignition conditions for magnetized target fusion in cylindrical geometry[J]. Nuclear Fusion, 2000, 40(1):41-45.
    [23] 刘斌, 李成, 邓爱东, 等.脉冲驱动磁化等离子体内爆升温点火的数值模拟[J].强激光与粒子束, 2016, 28(7):075010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs201607011

    LIU Bin, LI Cheng, DENG Aidong, et al. The numerical modeling about ignition and implosion heating process of magnetized plasma driven by pulsed-power[J]. High Power Laser and Particle Beams, 2016, 28(7):075010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs201607011
  • 加载中
图(10)
计量
  • 文章访问数:  5276
  • HTML全文浏览量:  1884
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-13
  • 修回日期:  2016-07-08
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回