激波冲击SF6重气泡引发射流的数值模拟

朱跃进 于蕾 潘剑锋 潘振华 张彭岗

朱跃进, 于蕾, 潘剑锋, 潘振华, 张彭岗. 激波冲击SF6重气泡引发射流的数值模拟[J]. 爆炸与冲击, 2018, 38(1): 50-59. doi: 10.11883/bzycj-2016-0135
引用本文: 朱跃进, 于蕾, 潘剑锋, 潘振华, 张彭岗. 激波冲击SF6重气泡引发射流的数值模拟[J]. 爆炸与冲击, 2018, 38(1): 50-59. doi: 10.11883/bzycj-2016-0135
ZHU Yuejin, YU Lei, PAN Jianfeng, PAN Zhenhua, ZHANG Penggang. Simulation on jet formation induced by interaction of shock wave with SF6 bubble[J]. Explosion And Shock Waves, 2018, 38(1): 50-59. doi: 10.11883/bzycj-2016-0135
Citation: ZHU Yuejin, YU Lei, PAN Jianfeng, PAN Zhenhua, ZHANG Penggang. Simulation on jet formation induced by interaction of shock wave with SF6 bubble[J]. Explosion And Shock Waves, 2018, 38(1): 50-59. doi: 10.11883/bzycj-2016-0135

激波冲击SF6重气泡引发射流的数值模拟

doi: 10.11883/bzycj-2016-0135
基金项目: 

国家自然科学基金项目 11402102

江苏省自然科学基金青年项目 BK20140524

江苏省博士后基金项目 1402013B

江苏大学高级专业人才科研启动基金项目 14JDG031

详细信息
    作者简介:

    朱跃进(1986—),男,博士,讲师,zyjwind@163.com

  • 中图分类号: O357.5

Simulation on jet formation induced by interaction of shock wave with SF6 bubble

  • 摘要: 为深入研究重气泡内激波聚焦和射流生成的机理,采用高精度计算格式和高网格分辨率对马赫数为1.23的平面入射激波与SF6重气泡的作用过程进行数值模拟,计算结果与文献中实验吻合较好。结果显示:入射激波在重气泡内首先在流向上汇聚形成上、下对称的高压区,随后,这对高压区在SF6重气泡中心对称轴处再次碰撞,完成激波聚焦过程,并在气泡下游界面附近形成远大于初始压力和密度的局部高压高密度区,体现出SF6重气泡极强的聚能效应;激波聚焦还引起气泡下游界面附近的涡量变化,涡对的旋转能够加速射流形成与发展。因此,SF6重气泡下游界面附近的高压区和涡量分布对形成射流结构均有促进作用。
  • 图  1  初始流场示意图

    Figure  1.  Schematic of initial flow

    图  2  实验与数值结果对比

    Figure  2.  Comparisons between experiment and simulation

    图  3  气泡上游极点位置随时间的变化规律

    Figure  3.  Variations of upstream pole with time

    图  4  气泡上游射流长度随时间的变化规律

    Figure  4.  Variations of jet length with time

    图  5  波系与SF6气泡演化过程

    Figure  5.  Evolution of waves and SF6 gas bubble

    图  6  密度场分布云图

    Figure  6.  Contour of density field distribution

    图  7  不同时刻SF6重气泡中心对称轴上的密度分布曲线

    Figure  7.  Density profiles of SF6 bubble along symmetric axis at different times

    图  8  不同时刻SF6重气泡中心对称轴上的压力分布曲线

    Figure  8.  Pressure profiles of SF6 bubble along symmetric axis at different times

    图  9  不同时刻SF6重气泡的涡量分布云图

    Figure  9.  Vorticity contours of SF6 heavy bubble at different times

    表  1  气体参数

    Table  1.   Gas parameters

    气体 ρ/(kg·m-3) γ c/(m·s-1) ρc/(kg·m-2·s-1) M
    空气 1.19 1.40 346.0 411.7 29
    SF6 6.14 1.09 133.9 822.1 146
    下载: 导出CSV
  • [1] MARAN S P, SONNEBORN G, PUN C S J, et al. Physical conditions in circumstellar gas surrounding SN 1987A 12 years after outburst[J]. The Astrophysical Journal, 2000, 545(1):390-398. doi: 10.1086/apj.2000.545.issue-1
    [2] YANG J, KUBOTA T, ZUKOSKI E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity[J]. Journal of Fluid Mechanics, 1994, 258(1):217-244. http://adsabs.harvard.edu/abs/1994JFM...258..217Y
    [3] HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181(8):41-76. http://adsabs.harvard.edu/abs/1987JFM...181...41H
    [4] LAYES G, JOURDAN G, HOUAS L. Distortion of a spherical gaseous interface accelerated by a plane shock wave[J]. Physical Review Letters, 2003, 91(17):174502. doi: 10.1103/PhysRevLett.91.174502
    [5] LAYES G, JOURDAN G, HOUAS L. Experimental investigation of the shock wave interaction with a spherical gas inhomogeneity[J]. Physics of Fluids, 2005, 17(2):028103. doi: 10.1063/1.1847111
    [6] LAYES G, METAYER O L. Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion[J]. Physics of Fluids, 2007, 19(19):042105. doi: 10.1063/1.2720597?journalCode=phf
    [7] LAYES G, JOURDAN G, HOUAS L. Experimental study on a plane shock wave accelerating a gas bubble[J]. Physics of Fluids, 2009, 21(7):074102. doi: 10.1063/1.3176474
    [8] GIORDANO J, BURTSCHELL Y. Richtmyer-Meshkov instability induced by shock-bubble interaction: Numerical and analytical studies with experimental validation[J]. Physics of Fluids, 2006, 18(3):036102. doi: 10.1063/1.2185685
    [9] TOMKINS C, KUMAR S, ORLICZ G, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. Journal of Fluid Mechanics, 2008, 611(3):131-150. http://adsabs.harvard.edu/abs/2008JFM...611..131T
    [10] HAEHN N, WEBER C, OAKLEY J, et al. Experimental study of the shock-bubble interaction with reshock[J]. Shock Waves, 2008, 44(1):47-56. doi: 10.1007/s00193-011-0345-8
    [11] ZHAI Z G, SI T, LUO X S, et al. On the evolution of spherical gas interfaces accelerated by a planar shock wave[J]. Physics of Fluids, 2011, 23(8):084104. doi: 10.1063/1.3623272
    [12] 朱跃进, 董刚, 刘怡昕, 等.入射和反射激波诱导重气泡变形和失稳的三维数值研究[J].高压物理学报, 2012, 26(3):266-272. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gywl201203004&dbname=CJFD&dbcode=CJFQ

    ZHU Yuejin, DONG Gang, LIU Yixin, et al. Three-dimensional numerical investigation of deformation and instability of high-density bubble induced by incident and reflected shock waves[J]. Chinese Journal of High Pressure Physics, 2012, 26(3):266-272. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gywl201203004&dbname=CJFD&dbcode=CJFQ
    [13] ZHU Yuejin, DONG Gang, FAN Baochun, et al. Formation and evolution of vortex rings induced by interactions between shock waves and a low-density bubble[J]. Shock Waves, 2012, 22(22):495-509. doi: 10.1007/s00193-012-0393-8
    [14] 邹立勇, 刘仓理, 庞勇, 等.激波作用下SF6气泡界面演化和射流发展的数值模拟[J].高压物理学报, 2013, 27(1):90-98. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gywl201301014&dbname=CJFD&dbcode=CJFQ

    ZOU Liyong, LIU Cangli, PANG Yong, et al. A numerical study on interface evolution and jet development of a shocked SF6 gas bubble[J]. Chinese Journal of High Pressure Physics, 2013, 27(1):90-98. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gywl201301014&dbname=CJFD&dbcode=CJFQ
    [15] ZOU L Y, ZHAI Z G, LIU J H, et al. Energy convergence effect and jet phenomenon of shock-heavy spherical bubble interaction[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(12):124703. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jgxg201512011&dbname=CJFD&dbcode=CJFQ
    [16] ZHAI Zhigang, SI Ting, ZOU Liyong, et al. Jet formation in shock-heavy gas bubble interaction[J]. Acta Mechanica Sinica, 2013, 29(1):24-35. doi: 10.1007/s10409-013-0003-8
    [17] 王革, 关奔.激波作用下R22气泡射流现象研究[J].力学学报, 2013, 45(5):707-715. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxxb201305009&dbname=CJFD&dbcode=CJFQ

    WANG Ge, GUAN Ben. A study on jet phenomenon of R22 gas cylinder under the impact of shock wave[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5):707-715. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxxb201305009&dbname=CJFD&dbcode=CJFQ
    [18] 沙莎, 陈志华, 薛大文.激波冲击R22重气柱所导致的射流与混合研究[J].物理学报, 2013, 62(14):144701. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201314045&dbname=CJFD&dbcode=CJFQ

    SHA Sha, CHEN Zhihua, XUE Dawen. The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder[J]. Acta Physica Sinica, 2013, 62(14):144701. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201314045&dbname=CJFD&dbcode=CJFQ
    [19] 沙莎, 陈志华, 张庆兵.激波与SF6球形气泡相互作用的数值研究[J].物理学报, 2015, 64(1):015201. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201501024&dbname=CJFD&dbcode=CJFQ

    SHA Sha, CHEN Zhihua, ZHANG Qingbing. Numerical investgations on the interaction of shock waves with spherical SF6 bubbles[J]. Acta Physica Sinica, 2015, 64(1):015201. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201501024&dbname=CJFD&dbcode=CJFQ
    [20] JIANG Guangshan, SHU Chiwang. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228. doi: 10.1006/jcph.1996.0130
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  5249
  • HTML全文浏览量:  1737
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-17
  • 修回日期:  2016-08-19
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回