高速杆式弹侵彻下蓄液结构的防护能力

吴晓光 李典 吴国民 侯海量 朱锡 戴文喜

吴晓光, 李典, 吴国民, 侯海量, 朱锡, 戴文喜. 高速杆式弹侵彻下蓄液结构的防护能力[J]. 爆炸与冲击, 2018, 38(1): 76-84. doi: 10.11883/bzycj-2016-0146
引用本文: 吴晓光, 李典, 吴国民, 侯海量, 朱锡, 戴文喜. 高速杆式弹侵彻下蓄液结构的防护能力[J]. 爆炸与冲击, 2018, 38(1): 76-84. doi: 10.11883/bzycj-2016-0146
WU Xiaoguang, LI Dian, WU Guomin, HOU Hailiang, ZHU Xi, DAI Wenxi. Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile[J]. Explosion And Shock Waves, 2018, 38(1): 76-84. doi: 10.11883/bzycj-2016-0146
Citation: WU Xiaoguang, LI Dian, WU Guomin, HOU Hailiang, ZHU Xi, DAI Wenxi. Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile[J]. Explosion And Shock Waves, 2018, 38(1): 76-84. doi: 10.11883/bzycj-2016-0146

高速杆式弹侵彻下蓄液结构的防护能力

doi: 10.11883/bzycj-2016-0146
基金项目: 

国家自然科学基金项目 51679246

国家自然科学基金项目 51409253

详细信息
    作者简介:

    吴晓光(1960—),男,博士,研究员

    通讯作者:

    侯海量,hou9611104@163.com

  • 中图分类号: O385

Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile

  • 摘要: 为提高蓄液结构的防护能力,开展蓄液结构弹道侵彻实验,通过改变其前、后面板厚度配比,研究前、后面板不同厚度匹配对蓄液结构破坏模式、压力载荷特性及防护能力的影响。结果表明:弹丸初速是影响入射波压力峰值大小的主要因素。固定前、后面板总厚度不变时,随着前、后面板厚度比的增大,前面板破坏模式由剪切冲塞-薄膜鼓胀-凹陷变形转变为剪切冲塞-薄膜鼓胀直至剪切冲塞破坏,后面板破坏模式由隆起-碟形破坏转变为薄膜鼓胀-花瓣开裂破坏。前、后面板破坏模式是相互影响的,前、后面板厚度匹配关系决定了其相应破坏模式的发生。前面板薄后面板厚的蓄液结构吸收冲击动能更多,抗侵彻能力也更强。
  • 图  1  弹道侵彻蓄液结构实验示意图

    Figure  1.  Schematic of liquid-filled structure subjected to projectile penetration

    图  2  蓄液结构模型

    Figure  2.  Liquid-filled structure

    图  3  实验后弹丸变形破坏形貌

    Figure  3.  Projectile body deformation and failure morphology after experiment

    图  4  前后面板1 mm/5 mm厚度匹配时蓄液结构侵彻后破坏形貌

    Figure  4.  Liquid-filled structure's morphology after penetration at matching of thickness (1 mm/5 mm) between front and rear panels

    图  5  前后面板2 mm/4 mm厚度匹配时蓄液结构侵彻后破坏形貌

    Figure  5.  Liquid-filled structure's morphology after penetration at matching of thickness (2 mm/4 mm) between front and rear panels

    图  6  前后面板4 mm/2 mm厚度匹配时蓄液结构侵彻后破坏形貌

    Figure  6.  Liquid-filled structure's morphology after penetration at matching of thickness (4 m/2 mm) between front and rear panels

    图  7  不同工况下前、后面板穿孔轴线处挠度变形曲线

    Figure  7.  Drill axis deflection distribution of front and rear plates in different conditions

    图  8  文献[17]中所测压力峰值时程曲线

    Figure  8.  History of measured pressure in reference [17]

    图  9  工况1中测点所测压力时程曲线

    Figure  9.  Histories of pressure by measuring points in condition 1

    图  10  各工况下压力峰值随弹丸初速关系曲线

    Figure  10.  Relation between peak pressure and initial velocity in each condition

    图  11  前、后面板不同厚度匹配下吸能随弹丸初速度变化关系

    Figure  11.  Relation between initial velocity and absorption at matching of different thicknesses of front and rear panels

    表  1  材料参数

    Table  1.   Material parameters

    材料 E/GPa ρ/(kg·m-3) ν σy/MPa σb/MPa δ/%
    45钢 205 7 800 0.3 335 598 16
    Q235钢 210 7 850 0.3 235 400~490 22
    下载: 导出CSV

    表  2  弹道实验结果

    Table  2.   Result of ballistic experiment

    工况 h1/mm h2/mm v0/(m·s-1) vr/(m·s-1) ΔE/J pm/MPa pc/MPa
    1 1 5 792.44 300.60 6 585.61 9.70 1.61
    2 1 5 958.22 390.62 9 378.62 18.04 2.14
    3 1 5 1 067.99 440.90 11 591.07 24.50 2.20
    4 2 4 773.56 294.30 6 269.34 9.22 1.85
    5 2 4 953.97 383.20 9 349.40 17.82 2.06
    6 2 4 966.84 402.70 9 464.50 17.74 1.95
    7 4 2 792.62 321.73 6 428.02 8.90 1.31
    8 4 2 996.19 490.10 9 214.41 21.10 2.01
    9 4 2 1 053.43 531.00 10 128.89
    下载: 导出CSV
  • [1] NICOLAS L, AURÉLIA D, FRÉDÉRIC H, et al. Ballistic impact on an industrial tank: Study and modeling of consequences[J]. Journal of Hazardous Materials, 2009, 172(2/3):587-594. https://www.researchgate.net/publication/257919582_Ballistic_impact_on_an_industrial_tank_Study_and_modeling_of_consequences
    [2] 矶部孝. 水下弹道的研究[M]. 周佩芬, 译. 北京: 国防工业出版社, 1983: 56-128.
    [3] DELETOMBE E, FABIS J, DUPAS J, et al. Experimental analysis of 7.62 mm hydrodynamic ram in containers[J]. Journal of Fluids and Structures, 2013, 37(11):1-21.DOI: 10.1016/j.jfluidstructs.2012.11.003.
    [4] PETER J, DISIMILE L A, SWANSON N T. The hydrodynamic ram pressure generated by spherical projectiles[J]. International Journal of Impact Engineering, 2009, 36(6):821-829. doi: 10.1016/j.ijimpeng.2008.12.009
    [5] TOWNSEND D, PARK N, DEVALL P M. Failure of fluid filled structures due to high velocity fragment impact[J]. International Journal of Impact Engineering, 2003, 29(1):723-733.DOI: 10.1016/j.ijimpeng.2003.10.019.
    [6] 李典, 朱锡, 侯海量, 等.高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J].爆炸与冲击, 2016, 36(1):1-8. doi: 10.11883/1001-1455(2016)01-0001-08

    LI Dian, ZHU Xi, HOU Hailiang, et al. Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J]. Explosion and Shock Waves, 2016, 36(1):1-8. doi: 10.11883/1001-1455(2016)01-0001-08
    [7] VARAS D, ZAERA R, LÓPEZ P. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2011, 93(10):2598-2609.DOI: 10.1016/j.compstruct.2011.04.025.
    [8] NISHIDA M, TANAKA K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. International Journal of Impact Engineering, 2006, 32(12):2-16. https://www.sciencedirect.com/science/article/pii/S0734743X05000916
    [9] SHI H H, ITOH M, TAKAMi T. Optical observation of the supercavitation Induced by high-speed water entry[J]. Journal of Fluids Engineering, 2000, 122(4):806-810. doi: 10.1115/1.1310575
    [10] KNAPP R T, DAILY J W, HAMMIT F G. Cavitation[M]. New York: McGraw Hill, 1979.
    [11] 曹伟, 王聪, 魏英杰, 等.自然超空泡形态特性的射弹试验研究[J].工程力学, 2006, 23(12):175-187. doi: 10.3969/j.issn.1000-4750.2006.12.031

    CAO Wei, WANG Cong, WEI Yingjie, et al. High-speed projectile experimental investigation on the characteristics of natural supercaviation[J]. Engineering Mechanics, 2006, 23(12):175-187. doi: 10.3969/j.issn.1000-4750.2006.12.031
    [12] 沈晓乐, 朱锡, 侯海量, 等.高速破片侵彻防护液舱试验研究[J].中国舰船研究, 2011, 6(3):12-15. http://www.cqvip.com/QK/93256A/201103/38474331.html

    SHEN Xiaole, ZHU Xi, HOU Hailiang, et al. Experimental study on penetration properties of high velocity fragment into safety liquid cabin[J]. Chinese Journal of Ship Research, 2011, 6(3):12-15. http://www.cqvip.com/QK/93256A/201103/38474331.html
    [13] 李营, 吴卫国, 郑元洲, 等.舰船防护液舱吸收爆炸破片的机理[J].中国造船, 2015, 56(2):38-44. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D617120

    LI Ying, WU Weiguo, ZHENG Yuanzhou, et al. Study on mechanism of explosive fragments absorbed by vessel protective tank[J]. Ship Buliding of China, 2015, 56(2):38-44. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D617120
    [14] 孔祥韶, 吴卫国, 刘芳, 等.舰船舷侧防护液舱对爆炸破片的防御作用研究[J].船舶力学, 2014, 18(8):996-1004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cblx201408015

    KONG Xiangshao, WU Weiguo, LIU fang, et al. Research on protective effect of guarding fluid cabin under attacking by explosion fragments[J]. Journal of Ship Mechanics, 2014, 18(8):996-1004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cblx201408015
    [15] 沈晓乐, 朱锡, 侯海量, 等.高速破片入水镦粗变形及侵彻特性有限元分析[J].舰船科学技术, 2012, 34(7):25-29. doi: 10.3404/j.issn.1672-7649.2012.07.005

    SHEN Xiaole, ZHU Xi, HOU Hailiang, et al. Finite element analysis of underwater high velocity fragment mushrooming and penetration properties[J]. Ship Science and Technology, 2012, 34(7):25-29. doi: 10.3404/j.issn.1672-7649.2012.07.005
    [16] NICOLAS L, AURÉLIA D. Experimental study of hydraulic ram effects on a liquid storage tank: Analysis of overpressure and cavitation induced by a high-speed projectile[J]. Journal of Hazardous Materials, 2010, 178(1/2/3):635-643.DOI: 10.1016/j.jhazmat.2010.01.132.
    [17] DISIMILEA P J, SWANSONB L A, NORMAN T, et al. The hydrodynamic ram pressure generated by spherical projectiles[J]. International Journal of Impact Engineering, 2009, 36(6):821-829.DOI: 10.1016/j.ijimpeng.2008.12.009.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  5461
  • HTML全文浏览量:  2006
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-24
  • 修回日期:  2016-11-03
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回