Validity analysis of materials' dynamic tensile SHTB experimental technique at ultrahigh temperature
-
摘要: 针对高温拉伸分离式Hopkinson杆实验技术,通过数值模拟、实验验证以及几种典型材料的高温动态拉伸性能测试相结合的方法,对此实验技术中存在的几个关键问题进行了深入研究。结果表明:对于平板状钩挂式拉伸试样,通过标距段尺寸优化后,应力分布均匀,流动应力曲线与螺纹拉伸试样一致,且应力上升段后没有剧烈跳动;通过精确气动控制,在加载脉冲到来同时,可实现有效的试样快速同步组装和加载;当试样温度为1 200 ℃时,在冷加载杆与高温试样接触以及应力波加载试样的整个过程中,试样平均温度下降约1.3%,而加载杆端温升低于180 ℃。为了验证此实验技术,对3D打印TC4、镍基单晶高温合金DD6进行了最高温度约1 200 ℃时的高温动态拉伸力学性能实验测试。
-
关键词:
- Hopkinson拉杆 /
- 高温 /
- 拉伸试样 /
- 同步组装 /
- 高应变率
Abstract: In this work we investigated several key issues in view of the dynamic tensile experimental technique used in the split Hopkinson tension bar at ultra high temperature by performing numerical simulation, experimental verification and tests of several typical materials' dynamic tensile property at high temperature. The results show that the stress distribution was uniform for the flat tensile specimen with a hook joint after its gauge section size was optimized. The flow stress curve of the hook joint flat tensile specimen coincided well with that of the thread specimen, and no evident shake was observed in the strain rising stage. Through accurate pneumatic control, effective rapid synchronous assembly and loading of the specimen could be achieved at the same time when the loading wave arrived. When the temperature of the specimen reached 1 200 ℃, the average temperature of the specimen only dropped about 1.3% and the temperature rise of the loading bars kept below 180 ℃ during the whole cold contact between the high temperature specimen with the cold loading bars as well as in the process of the stress wave loading the specimen. To validate this experimental technique, tests were conducted at the temperature as high as about 1 200 ℃ for the dynamic tensile mechanical properties of a few materials such as 3D printed TC4 and single crystal nickel-base superalloy DD6.-
Key words:
- Hopkinson tension bar /
- high temperature /
- tensile specimen /
- synchronous assembly /
- high strain rate
-
-
[1] GILAT A, WU X. Elevated temperature testing with the torsional split Hopkinson bar[J]. Experimental Mechanics, 1994, 34(2):166-170. doi: 10.1007/BF02325713 [2] 佟景伟, 高丛峰, 李鸿琦, 等.温度梯度对拉伸SHB试验误差的数值分析[J].爆炸与冲击, 2001, 21(4):277-281. http://www.bzycj.cn/CN/abstract/abstract10235.shtmlTONG Jingwei, GAO Congfeng, LI Hongqi, et al. Numerical analysis on the error in the split Hopkinson tension bar test at temperature gradient[J]. Explosion and Shock Waves, 2001, 21(4):277-281. http://www.bzycj.cn/CN/abstract/abstract10235.shtml [3] 夏开文, 刘文彦, 唐志平.30CrMnSiA钢高温动态力学性质的实验研究[J].爆炸与冲击, 1998, 18(4):310-316. http://www.bzycj.cn/CN/abstract/abstract10422.shtmlXIA Kaiwen, LIU Wenyan, TANG Zhiping. Experimental study of dynamic properties of 30CrMnSiA steel at high temperature[J]. Explosion and Shock Waves, 1998, 18(4):310-316. http://www.bzycj.cn/CN/abstract/abstract10422.shtml [4] ROSENBERG Z, DAWICKE D, STEADER E, et al. A new technique for heating specimens in split-Hopkinson-bar experiments using induction-coil heaters[J]. Experimental Mechanics, 1986, 26(3):275-278. doi: 10.1007/BF02320053 [5] FRANTZ C E, FOLLANSBEE P S, WRIGHT W J. New experimental techniques with the split Hopkinson pressure bar[C]//8th International Conference on High Energy Rate Fabrication. 1984. [6] GUO W G, NEMAT-NASSER S. Flow stress of nitronic-50 stainless steel over a wide range of strain rates and temperatures[J]. Mechanics of Materials, 2006, 38(11):1090-1103. doi: 10.1016/j.mechmat.2006.01.004 [7] 郭伟国.高导无氧铜在大变形、不同温度和不同应变率下的流动应力和本构模型[J].爆炸与冲击, 2005, 25(3):244-250. http://www.bzycj.cn/CN/abstract/abstract9341.shtmlGUO Weiguo. Flow stress and constitutive model of OFHC Cu for large deformation, different temperatures and different strain rates[J]. Explosion and Shock Waves, 2005, 25(3):244-250. http://www.bzycj.cn/CN/abstract/abstract9341.shtml [8] 郭伟国, 朱泽, 曾志银, 等. 高温高应变率拉伸同步实验装置: ZL 2012 2 0438121. 0[P]. 2013-04-17. [9] LI Yulong, ZHANG Yongkang, XUE Pu. Study of similarity law for bird impact on structure[J]. Chinese Journal of Aeronautics, 2008, 21(6):512-517. doi: 10.1016/S1000-9361(08)60168-5 [10] 陈滔, 李庆斌, 管俊峰, 等.霍普金森拉杆装置螺纹过渡段变形测量修正[J].工程力学, 2013, 30(7):276-281. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gclx201307043&dbname=CJFD&dbcode=CJFQCHEN Tao, LI Qingbin, GUAN Junfeng, et al. Deformation measurement correction for the threaded connection and transition part utilizing SHTB[J]. Engineering Mechanics, 2013, 30(7):276-281. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gclx201307043&dbname=CJFD&dbcode=CJFQ [11] KLEPACZKO J R, RUSINEK A, RODRÍGUEZ-MARTÍNEZ J A, et al. Modelling of thermo-viscoplastic behaviour of DH-36 and Weldox 460-E structural steels at wide ranges of strain rates and temperatures, comparison of constitutive relations for impact problems[J]. Mechanics of Materials, 2009, 41(5):599-621. doi: 10.1016/j.mechmat.2008.11.004 [12] 张树华.TC4、16Mn合金及Al2O3陶瓷的高温弹性模量[J].高压物理学报, 1995, 9(2):133-138. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gywl502.007&dbname=CJFD&dbcode=CJFQZHANG Shuhua. High temperature elastic moduli of TC4, 16Mn and Al2O3 ceramics[J]. Chinese Journal of High Pressure Physics, 1995, 9(2):133-138. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gywl502.007&dbname=CJFD&dbcode=CJFQ [13] JASTRZEBSKI Z D, KOMANDURI R. The nature and properties of engineering materials[M]. Wiley, 1975. [14] LI P H, GUO W G, HUANG W D, et al. Thermomechanical response of 3D laser-deposited Ti-6Al-4V alloy over a wide range of strain rates and temperatures[J]. Materials Science and Engineering: A, 2015, 647:34-42. doi: 10.1016/j.msea.2015.08.043 [15] WANG J, GUO W G, LI P, et al. Dynamic tensile properties of a single crystal nickel-base superalloy at high temperatures measured with an improved SHTB technique[J]. Materials Science and Engineering: A, 2016, 670:1-8. doi: 10.1016/j.msea.2016.06.002 期刊类型引用(5)
1. 李彦军,陈旭,曾庆鹏,杨龙滨,史建新. 舰船动力设备抗冲击评估方法综述. 中国舰船研究. 2024(03): 61-85 .
百度学术2. 洪晓文,李伟兵,李文彬,徐赫阳,李军宝. 多层复合装药爆炸冲击波信号能量谱. 兵工学报. 2020(11): 2243-2251 .
百度学术3. 谢耀国,姚熊亮,崔洪斌,李新飞. 基于小波分析的实船水下爆炸船体响应特征. 爆炸与冲击. 2017(01): 99-106 .
本站查看4. 闫睿,裴东兴,崔春生. 基于小波变换的CO_2预裂腔内压力时频特征分析. 现代电子技术. 2017(21): 98-101 .
百度学术5. 伍俊,杨益,庄铁栓. 水中爆炸作用机理及毁伤效应研究综述. 火炸药学报. 2016(01): 1-13 .
百度学术其他类型引用(3)
-
推荐阅读
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
远场冲击波下螺旋桨毁伤与空化特征研究
王志凯 等, 爆炸与冲击, 2025
Cl-20基高爆速压装炸药的落锤冲击响应特性
徐风 等, 爆炸与冲击, 2025
超高速撞击条件下混凝土靶体内 应力波的测量和分析
钱秉文 等, 爆炸与冲击, 2025
基于小波变换的爆炸电磁辐射研究
朱汪平 等, 高压物理学报, 2023
乳化炸药水下爆炸载荷输出特性实验研究
郑欣颖 等, 高压物理学报, 2022
水下接触爆炸作用下金属/cfrp复合层合板的防护性能
赵豫熙 等, 高压物理学报, 2024
Targeting galectin-3 in inflammatory and fibrotic diseases
Bouffette, Selena et al., TRENDS IN PHARMACOLOGICAL SCIENCES, 2023
A spatiotemporal casualty assessment method caused by earthquake falling debris of building clusters considering human emergency behaviors
INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2025
Study on internal rise law of fracture water pressure and progressive fracture mechanism of rock mass under blasting mpact
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY



下载:
百度学术