40 kg TNT当量爆炸塔的振动监测及分析

胡八一 肖智强 谷岩 刘宇 冯东升 刘军

胡八一, 肖智强, 谷岩, 刘宇, 冯东升, 刘军. 40 kg TNT当量爆炸塔的振动监测及分析[J]. 爆炸与冲击, 2018, 38(4): 918-924. doi: 10.11883/bzycj-2016-0260
引用本文: 胡八一, 肖智强, 谷岩, 刘宇, 冯东升, 刘军. 40 kg TNT当量爆炸塔的振动监测及分析[J]. 爆炸与冲击, 2018, 38(4): 918-924. doi: 10.11883/bzycj-2016-0260
HU Bayi, XIAO Zhiqiang, GU Yan, LIU Yu, FENG Dongsheng, LIU Jun. Vibration monitoring and analysis of the 40 kg TNT equivalent blast containment chamber[J]. Explosion And Shock Waves, 2018, 38(4): 918-924. doi: 10.11883/bzycj-2016-0260
Citation: HU Bayi, XIAO Zhiqiang, GU Yan, LIU Yu, FENG Dongsheng, LIU Jun. Vibration monitoring and analysis of the 40 kg TNT equivalent blast containment chamber[J]. Explosion And Shock Waves, 2018, 38(4): 918-924. doi: 10.11883/bzycj-2016-0260

40 kg TNT当量爆炸塔的振动监测及分析

doi: 10.11883/bzycj-2016-0260
基金项目: 

国家科技专项工程项目 SJ05.1

详细信息
    作者简介:

    胡八一(1965-), 男, 研究员

    通讯作者:

    肖智强, xzhiqiang@21cn.com

  • 中图分类号: O384

Vibration monitoring and analysis of the 40 kg TNT equivalent blast containment chamber

  • 摘要: 运用速度传感器和拾振器,对40 kg TNT当量爆炸塔在15、20、25和40 kg TNT炸药爆炸加载下爆炸塔旁侧实验室所在地面、屋顶以及塔顶的振动速度进行监测分析。测试结果表明:在本实验条件下实验室地面质点振动速度峰值均小于5 cm/s,振动持续时间为5~10 s,振动频率一般高于10 Hz;屋顶的竖向振动峰值是水平向的6~7倍,即存在显著的竖向振动放大效应。小波包分析表明:地面竖向振动携带的能量是水平向振动携带能量的2.5~4.0倍,质点振动信号中95%以上的能量处于0~160 Hz频带,而竖向振动中90%以上的能量集中在10~40 Hz范围。研究结果提示:6 m深隔振沟的隔振效果十分有限,在超过5 kg TNT当量的加载条件下,欲取得理想的隔振效果,应选择独立地基和隔振支座的减振设计方式。
  • 图  1  塔体结构及测点分布示意

    Figure  1.  Schematic of chamber and velocity measuring points

    图  2  40 kg TNT加载时A1点的地面振动速度波形及FFT频谱

    Figure  2.  Vibration velocity waves and their FFT spectra under 40 kg TNT load at A1 point

    表  1  不同区域振动速度峰值比较

    Table  1.   Comparison of vibration velocity peaks in different zones

    w/kg 方向 地面振动速度峰值/(cm·s-1) 屋顶振动速度峰值/(cm·s-1) 塔顶振动速度峰值/(cm·s-1)
    A1 A1 B1 B1 C1 C2 C3
    x 1.26 2.21 0.52 0.58 14.23 8.13 4.30
    15 y 0.92 0.80 0.47 0.73 9.96 4.09 1.90
    z 1.37 2.05 3.34 3.65 31.86 15.69 8.00
    x 1.70 2.14 0.83 0.68 25.15 12.41 8.10
    20 y 1.39 0.92 0.69 0.94 22.53 6.84 1.58
    z 2.18 2.88 4.56 5.09 45.92 22.60 11.24
    下载: 导出CSV

    表  2  不同测点的振动速度峰值

    Table  2.   Comparison of vibration velocity peaks at different measure points

    w/kg 方向 振动速度峰值/(cm·s-1)
    A1 A2 A5 A7
    x 2.21 0.47 0.15 0.07
    15 y 0.80 0.14 0.06 0.06
    z 2.05 1.07 0.28 0.22
    x 2.14 0.58 0.18 0.12
    20 y 0.92 0.17 0.07 0.09
    z 2.88 1.52 0.36 0.29
    x 3.67 0.64 0.23 0.11
    25 y 1.95 0.26 0.15 0.09
    z 2.09 1.60 0.49 0.44
    x 3.11 0.85 0.13 0.16
    40 y 0.91 0.47 0.01 0.08
    z 2.19 2.20 0.48 0.33
    下载: 导出CSV

    表  3  竖向振动信号的能量分布

    Table  3.   Energy distribution of the vibration signal in z direction

    f/Hz φE/%
    A1(地面) A2(地面) A5(地面) B1(屋顶) B2(屋顶) B5(屋顶)
    0~9.8 0.49 0.03 4.65 0.02 0.01 0.14
    9.8~19.5 45.29 55.24 64.93 26.43 31.78 43.36
    19.5~39.1 32.48 34.13 29.26 72.68 67.82 52.10
    39.1~78.1 5.53 5.42 0.45 0.55 0.29 4.04
    78.1~156.3 8.20 3.83 0.36 0.24 0.07 0.32
    156.3~312.5 3.18 1.31 0.08 0.05 0.02 0.02
    312.5~625.0 3.75 0.01 0.04 0.02 0.00 0.00
    625.0~1 250.0 1.03 0.01 0.07 0.00 0.00 0.01
    1 250.0~2 500.0 0.05 0.02 0.15 0.00 0.00 0.01
    E/(cm2·s-2) 1 592.31 911.57 109.26 41 877 17 033 1 564
    下载: 导出CSV

    表  4  两种载荷下A2点的振动信号能量分布

    Table  4.   Energy distribution of the vibration signal at A2 point under two loads

    f/Hz φE(w=15 kg)/% φE(w=40 kg)/%
    x y z x y z
    0~9.8 0.01 0.04 0.04 19.62 0.57 0.13
    9.8~19.5 68.62 38.87 60.24 12.43 13.93 17.30
    19.5~39.1 25.17 28.68 28.29 50.51 34.04 56.01
    39.1~78.1 4.50 23.59 6.77 12.31 23.51 13.37
    78.1~156.3 1.14 6.43 3.72 4.64 23.33 11.45
    156.3~312.5 0.43 0.44 0.90 0.25 3.04 1.66
    312.5~625.0 0.02 0.37 0.01 0.05 0.33 0.01
    625.0~1 250.0 0.03 0.47 0.01 0.06 0.42 0.02
    1 250.0~2 500.0 0.07 1.10 0.02 0.12 0.83 0.04
    E/(cm2·s-2) 196.68 14.01 735.87 352.25 54.45 1 060.20
    下载: 导出CSV

    表  5  5 kg爆炸塔地面振动速度峰值测量结果

    Table  5.   Vibration velocity peak of the ground neigboring the 5 kg TNT equivalent blast containment chamber

    振动时间/s 方向 振动速度峰值/(cm·s-1)
    2 m 8 m 15 m
    x 0.99 0.48 0.25
    1.73~1.95 y 0.84 0.41 0.29
    z 1.76 0.77 0.44
    下载: 导出CSV
  • [1] MORSE J L, WEINGART R C. High-explosives applications facility (HEAF): UCID-21864[R]. Livermore: Lawrence Livermore National Laboratory, 1989.
    [2] SWISDAK M, PECKHAM P. Validation tests in building 327-50-pound bombproof: NSWC-TR-384[R]. White Oak: Naval Surface Weapons Center, 1985.
    [3] LYLE J W. Calculating contained firing facility (CFF) explosive firing zones: UCRL-ID-132204-REV-2[R]. Livermore: Lawrence Livermore National Laboratory, 2001.
    [4] PASTRNAK J W, BAKER C F, SIMMONS L F. Measurements of a 1/4-scale model of a 60 kg explosives firing chamber: UCRL-JC-117774[R]. Livermore: Lawrence Livermore National Laboratory, 1995.
    [5] 胡八一, 陈石勇, 谷岩, 等.隔振沟对爆炸塔周边地表振动的影响[J].爆炸与冲击, 2012, 32(6):647-652. doi: 10.11883/1001-1455(2012)06-0647-06

    HU Bayi, CHEN Shiyong, GU Yan, et al. Effects of vibration-isolating trench on ground vibration surrounding blast containment chamber[J]. Explosion and Shock Waves, 2012, 32(6):647-652. doi: 10.11883/1001-1455(2012)06-0647-06
    [6] CHARLES F. Site 300's new contained firing facility[J]. Science and Technology Review, 1997, 3:4-9. https://www.osti.gov/servlets/purl/797810/
    [7] 娄建武, 龙源, 徐全军, 等.工程爆破中的建筑物振动监测[J].解放军理工大学(自然科学版), 2000, 1(5):58-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jfjlgdxxb200005012

    LOU Jianwu, LONG Yuan, XU Quanjun, et al. Measuring and analysis of structure's response vibration in engineering blasting[J]. Journal of PLA University of Science and Technology (Natural Science), 2000, 1(5):58-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jfjlgdxxb200005012
    [8] 陈士海, 魏海霞, 张子华, 等.钢筋混凝土结构爆破地震响应频谱及幅值变化规律分析[J].振动与冲击, 2011, 30(1):213-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201101047

    CHEN Shihai, WEI Haixia, ZHANG Zihua, et al. Spectral analysis and amplitude varying for blasting vibration response of a reinforced concrete building[J]. Journal of Vibration and Shock, 2011, 30(1):213-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201101047
    [9] ZHONG G S, AO L, ZHAO K. Influence of explosion parameters on wavelet packet frequency band energy distribution of blast vibration[J]. Journal of Central South University, 2012, 19(9):2674-2680. doi: 10.1007/s11771-012-1326-5
    [10] 宁瑞峰, 张世平.小波包分析在爆破震动信号能量衰减规律中的应用[J].爆破, 2014, 31(1):1-4. https://www.wenkuxiazai.com/doc/780e15eb011ca300a6c390ba.html

    NING Ruifeng, ZHANG Shiping. Application of wavelet packet analysis in blasting vibration signal energy attenuation law[J]. Blasting, 2014, 31(1):1-4. https://www.wenkuxiazai.com/doc/780e15eb011ca300a6c390ba.html
    [11] 费鸿禄, 曾翔宇, 杨智广.隧道掘进爆破振动对地表影响的小波包分析[J].爆炸与冲击, 2017, 37(1):77-83. doi: 10.11883/1001-1455(2017)01-0077-07

    FEI Honglu, ZENG Xiangyu, YANG Zhiguang. Influence of tunnel excavation blasting vibration on earth's surface based on wavelet packet analysis[J]. Explosion and Shock Waves, 2017, 37(1):77-83. doi: 10.11883/1001-1455(2017)01-0077-07
    [12] 朱振海, 杨永琦.沟槽对建筑物减震作用的动光弹研究[J].爆炸与冲击, 1989, 9(1):55-59. http://www.bzycj.cn/CN/abstract/abstract10872.shtml

    ZHU Zhenhai, YANG Yongqi. Dynamic photoelastic studies of the vibration damping by a slot near a structure[J]. Explosion and Shock Waves, 1989, 9(1):55-59. http://www.bzycj.cn/CN/abstract/abstract10872.shtml
    [13] JACOBSEN L S, AGBABIAN M S, KARAGOZIAN J. Study of shock isolation for hardened structures: AD639303[R]. Department of the Army, Office of the Chief of Engineers, 1996.
    [14] 严东晋, 钱七虎, 唐德高.爆炸冲击震动下隔震系统设计的可靠性[J].土木工程学报, 2001, 34(3):23-28. http://www.cqvip.com/QK/90342X/2001003/5330166.html

    YAN Dongjin, QIAN Qihu, TANG Degao. Reliability of isolation system under blast shock and vibration[J]. China Civil Engineering Journal, 2001, 34(3):23-28. http://www.cqvip.com/QK/90342X/2001003/5330166.html
    [15] 日本免震构造协会. 图解隔震结构入门[M]. 叶烈平, 译. 北京: 科学出版社, 1998.
    [16] 胡八一, 刘宇, 燕乐伟, 等.10 kg TNT当量爆炸容器的冲击振动监测[J].振动与冲击, 2001, 20(4):65-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj200104020

    HU Bayi, LIU Yu, YAN Lewei, et al. Shock induced vibration monitoring of the 10 kg TNT equivalent explosion vessel[J]. Journal of Vibration and Shock, 2001, 20(4):65-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj200104020
    [17] 胡八一, 刘仓理, 陈石勇, 等.25 kg TNT当量爆炸容器的冲击隔震研究[J].振动与冲击, 2006, 25(6):43-45. http://www.cnki.com.cn/Article/CJFDTotal-BOPO201404009.htm

    HU Bayi, LIU Cangli, CHEN Shiyong, et al. Study on isolation of shock induced vibration of a 25 kg TNT equivalent explosion vessel[J]. Journal of Vibration and Shock, 2006, 25(6):43-45. http://www.cnki.com.cn/Article/CJFDTotal-BOPO201404009.htm
    [18] 邓烜, 叶烈伟, 郁银泉, 等.大底盘多塔隔震结构设计[J].建筑结构, 2015, 45(8):13-24. http://www.cnki.com.cn/Article/CJFDTotal-JCJG201508004.htm

    DENG Xuan, YE Liewei, YU Yinquan, et al. Seismic isolation design of multi-tower structure with enlarged base[J]. Building Structure, 2015, 45(8):13-24. http://www.cnki.com.cn/Article/CJFDTotal-JCJG201508004.htm
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  5896
  • HTML全文浏览量:  1400
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-22
  • 修回日期:  2017-10-09
  • 刊出日期:  2018-07-25

目录

    /

    返回文章
    返回