A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial compression
-
摘要: 断续节理将对工程岩体的强度及变形等力学特性产生显著影响,损伤力学中视节理为岩体的一种宏观损伤,因而采用损伤张量来刻画其对岩体的影响。目前学术界提出了用节理的几何、强度及变形等3类参数来描述节理的物理力学性质,而目前的岩体损伤张量计算方法都只涉及前2类参数,均没有涉及其变形参数即法向及切向刚度。为此,在前人研究的基础上,基于断裂及损伤理论提出了考虑节理法向及切向刚度的单轴压缩下单条断续节理引起的损伤张量计算公式,进而通过考虑节理间相互作用给出了单组单排或多排节理岩体损伤张量计算公式。其次,以岩石细观动态损伤模型为基础,结合宏细观损伤耦合观点提出了一个能够同时考虑节理几何、强度及变形参数的断续节理岩体动态损伤本构模型。最后,利用该模型讨论了节理参数及载荷应变率等对岩体动态力学特性的影响,认为节理长度减小及摩擦角增大将导致岩体动态峰值强度及弹性模量增大;岩体动态峰值强度及弹性模量则随着节理法向及切向刚度的增大分别减小或增大;而当节理法向及切向刚度按照同一比例增大时,岩体动态峰值强度及弹性模量则是增大的。岩体动态峰值强度与载荷应变率呈正相关。Abstract: The intermittent joints have obvious effect on the strength and deformability of engineering rockmass. The joint is assumed to be a kind of macroscopic damage to the rockmass in the damage mechanics, therefore the damage tensor is adopted to describe its effect on the rockmass. Now three kinds of joint parameters such as the geometrical ones, strength ones and deformational ones are proposed in the academic circles to describe the joint physical and mechanical properties. However, the existing calculation methods of the rockmass damage tensor consider only the joint geometrical or strength parameters, not its deformational parameters such as normal stiffness and shear stiffness. Therefore, on the basis of the existing studies, the fracture and damage theory is adopted to propose the damage tensor calculation formula of the rockmass caused by an intermittent joint under uniaxial compression, and then that caused by one row or multi-row of joints in one set is given by considering the interaction of the joints. Secondly, based on the rock mesoscopic dynamic damage constitutive model and the viewpoint of macroscopic and mesoscopic damage coupling, a dynamic damage constitutive model for the rockmass with intermittent joints is proposed which can consider the joint geometrical, strength or deformational parameters at the same time. Finally, the effects of joint parameters and load strain rate on the rockmass dynamic mechanical behaviors are discussed with the proposed model. It is found the decrease in the joint length and the increase in the joint friction angle will increase the dynamic climax strength and elastic modulus of the rockmass. While with increasing the joint normal stiffness and shear stiffness, the dynamic climax strength and elastic modulus of the rockmass decrease and increase, respectively. While when the joint normal stiffness and shear stiffness increase in the same proportion, the dynamic climax strength and elastic modulus of the rockmass increase. The dynamic climax strength of the rockmass has a positive correlation with the load strain rate.
-
-
[1] AKIN M. Slope stability problems and back analysis in heavily jointed rock mass: A case study from Manisa, Turkey[J]. Rock Mechanics and Rock Engineering, 2013, 46(2):359-371. doi: 10.1007/s00603-012-0262-x [2] 张力民, 吕淑然, 刘红岩.综合考虑宏细观缺陷的岩体动态损伤本构模型[J].爆炸与冲击, 2015, 35(3):428-436. doi: 10.11883/1001-1455-(2015)03-0428-09ZHANG Limin, LV Shuran, LIU Hongyan. A dynamic damage constitutive model for rock mass by comprehensively considering macroscopic and mesoscopic flaws[J]. Explosion and Shock Waves, 2015, 35(3):428-436. doi: 10.11883/1001-1455-(2015)03-0428-09 [3] 刘红岩, 杨艳, 李俊峰, 等.基于TCK模型的断续节理岩体动态损伤本构模型[J].爆炸与冲击, 2016, 36(3):319-325. doi: 10.11883/1001-1455(2016)03-0319-07LIU Hongyan, YANG Yan, LI Junfeng, et al. Dynamic damage constitutive model for rock mass with non-persistent joints based on the TCK model[J]. Explosion and Shock Waves, 2016, 36(3):319-325. doi: 10.11883/1001-1455(2016)03-0319-07 [4] KYOYA T, ICHIKAWA Y, KAWAMOTO T. A damage mechanics theory for discontinuous rock mass[C]//Proceedings of the 5th International Conference on Numerical Methods in Geomechanics. Nagoya, 1985: 469-480. [5] KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory[J]. International Journal for Numerical Analysis Method in Geomechanics, 1988, 12(1):1-30. doi: 10.1002/(ISSN)1096-9853 [6] SWOBODA G, SHEN X P, ROSAS L. Damage model for jointed rock mass and its application to tunneling[J]. Computers and Geotechnics, 1998, 22(3/4):183-203. https://www.sciencedirect.com/science/article/pii/S0266352X98000093 [7] YUAN X P, LIU H Y, WANG Z Q. An interacting joint-mechanics based model for elastoplastic damage model of rock-like materials under compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 58(9):92-102. https://www.sciencedirect.com/science/article/pii/S1365160912002092 [8] SWOBODA G, YANG Q. An energy-based damage model of geomaterials:Ⅰ: Formulation and numerical results[J]. International Journal of Solids and Structures, 1999, 36(9):1719-1734. https://www.sciencedirect.com/science/article/pii/S0020768398000365 [9] LI N, CHEN W, ZHANG P, et al. The mechanical properties and a fatigue-damage model for jointed rock mass subjected to dynamic cyclical loading[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(7):1071-1079. https://www.researchgate.net/publication/248165191_The_mechanical_properties_and_a_fatigue-damage_model_for_jointed_rock_masses_subjected_to_dynamic_cyclical_loading [10] LIU Hongyan, ZHANG Limin. A damage constitutive model for rock mass with non-persistently closed joints under uniaxial compression[J]. Arabian Journal for Science and Engineering, 2015, 40(1):3107-3117. doi: 10.1007/s13369-015-1777-8 [11] 刘红岩, 王新生, 张力民, 等.断续节理岩体单轴压缩动态损伤本构模型[J].岩土工程学报, 2016, 38(3):426-436. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201802011.htmLIU Hongyan, WANG Xinsheng, ZHANG Limin, et al. A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3):426-436. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201802011.htm [12] PRUDENCIO M, JAN M V S. Strength and failure modes of rock mass models with non-persistent joints[J]. International Journal of Rock mechanics & Mining Sciences, 2007, 46(6):890-902. https://www.sciencedirect.com/science/article/pii/S1365160907000160 [13] TAYLOR L M, CHEN E P, KUSZMAUL J S. Microjoint induced damage accumulation in brittle rock under dynamic loading[J]. Computer Method in Applied Mechanics & Engineering, 1986, 55:301-320. http://www.sciencedirect.com/science/article/pii/0045782586900575 [14] GRADY D E, KIPP M E. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 17(3):147-157. http://www.oalib.com/references/17407042 [15] HUANG C, SUBHASH G, VITTON S J. A dynamic damage growth model for uniaxial compressive response of rock aggregates[J]. Mechanics of Materials, 2002, 34(5):267-277. doi: 10.1016/S0167-6636(02)00112-6 [16] HUANG C, SUBHASH G. Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(6):1089-1105. doi: 10.1016/S0022-5096(03)00002-4 [17] PALIWAL B, RAMESH K T. An interacting micro-joint damage model for failure of brittle materials under compression[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(3):896-923. doi: 10.1016/j.jmps.2007.06.012 [18] LIU Taoying, CAO Ping, LIN Hang. Damage and fracture evolution of hydraulic fracturing in compression-shear rock cracks[J]. Theoretical and Applied Fracture Mechanics, 2014, 74:55-63. doi: 10.1016/j.tafmec.2014.06.013 [19] LEE S, RAVICHANDRAN G. Joint initiation in brittle solids under multiaxial compression[J]. Engineering Fracture Mechanics, 2003, 70(13):1645-1658. doi: 10.1016/S0013-7944(02)00203-5 [20] 李建林, 哈秋瓴.节理岩体拉剪断裂与强度研究[J].岩石力学与工程学报, 1998, 17(3):259-266. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX904.028.htmLI Jianlin, HA Qiuling. A study of tensile-shear joint and strength related to jointed rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(3):259-266. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX904.028.htm [21] 范景伟, 何江达.含定向闭合断续节理岩体的强度特性[J].岩石力学与工程学报, 1992, 11(2):190-199. http://www.cqvip.com/QK/96026X/199202/918156.htmlFAN Jingwei, HE Jiangda. The strength behavior of rockmasses containing oriented and closed intermittent joints[J]. Chinese Journal of Rock Mechanics and Engineering, 1992, 11(2):190-199. http://www.cqvip.com/QK/96026X/199202/918156.html [22] CHEN W, LA BORDERIE C, MAUREL O, et al. Simulation of damage-permeability coupling for mortar under dynamic loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(5):457-474. doi: 10.1002/nag.v38.5 [23] GOODMAN R E. The mechanical properties of joints[C]//Proceeding of the 3rd Congress ISRM. Denver, 1974, Ⅰ(A): 127-140. [24] GOODMAN R E, TAYLOR R L, BREKKE T. A model for the mechanics of jointed rock[J]. Journal of Soil Mechanics and Foundations Division, 1968, 94:637-659. http://www.researchgate.net/publication/304714966_A_model_for_the_mechanics_of_jointed_rock?_sg=b8MO0PmdTRgxCnEO-TU_wZBP08GTw-SFYMaeUaPKFm6T503iva1D1R55D4t_A2-i31ZvUYvizDCpxoS7YpGA9npvef9GcG4jLRU_V82J8FI [25] BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20:249-268. https://www.sciencedirect.com/science/article/pii/0148906283905958 [26] KUMAR A. The effect of stress rate and temperature on the strength of basalt and granite[J]. Geophysics, 1968, 33(3):501-510. doi: 10.1190/1.1439947 期刊类型引用(11)
1. 刘红岩, 薛雷, 张光雄, 王光兵, 王基禹, 和铁柱, 邹宗山. 考虑裂隙粗糙度的岩体单轴压缩动态损伤模型. 爆炸与冲击. 2025(06)
本站查看2. 刘康琦,刘红岩,霍泽楠,薛雷,张光雄. 循环爆破作用下锁固型岩质边坡的累积损伤效应及稳定性分析. 爆炸与冲击. 2025(04): 153-165 .
本站查看3. 刘红岩,祝凤金,周月智,郑秀华. 考虑T应力及裂隙参数的岩体压剪断裂准则. 东北大学学报(自然科学版). 2024(06): 874-882 .
百度学术4. 吉东亮,高新强,董北毅,高璐,赵旭晨,马怡琛,刘禹辛. 动载作用下复合岩体力学失稳机制与损伤本构模型研究. 振动与冲击. 2024(19): 103-116 .
百度学术5. 刘红岩,张光雄,邹宗山,和铁柱. 考虑裂隙变形参数的岩体单轴压缩损伤模型. 水文地质工程地质. 2023(03): 85-92 .
百度学术6. 王本鑫,金爱兵,赵怡晴,孙浩,刘加柱. 基于DIC的含3D打印起伏节理试样破裂特性及损伤本构. 工程科学学报. 2022(12): 2029-2039 .
百度学术7. 柴少波,王昊,井彦林,贾能. 充填节理岩石累积损伤动力压缩特性试验研究. 岩石力学与工程学报. 2020(10): 2025-2037 .
百度学术8. 马平,谢天铖,刘红岩. 含X型交叉裂隙的岩体力学特性数值分析. 矿业研究与开发. 2019(02): 60-65 .
百度学术9. 李晓照,戚承志. 基于裂纹扩展脆性岩石动力压缩力学特性研究. 爆炸与冲击. 2019(08): 52-62 .
本站查看10. 蔚立元,朱子涵,孟庆彬,靖洪文,苏海健,何明. 循环加卸载损伤大理岩的动力学特性. 爆炸与冲击. 2019(08): 63-73 .
本站查看11. 汪杰,宋卫东,付建新. 考虑节理倾角的岩体损伤本构模型及强度准则. 岩石力学与工程学报. 2018(10): 2253-2263 .
百度学术其他类型引用(25)
-
推荐阅读
循环爆破作用下锁固型岩质边坡的累积损伤效应及稳定性分析
刘康琦 等, 爆炸与冲击, 2025
考虑动态拉压比影响的岩石损伤本构模型
胡学龙 等, 爆炸与冲击, 2025
循环冲击荷载作用下单节理岩体的动态力学行为
刘康琦 等, 爆炸与冲击, 2025
考虑微结构特征的陶瓷材料含损伤本构模型
刘慕皓 等, 爆炸与冲击, 2024
常规三轴压缩下高强混凝土能量演化和破坏准则
张亮亮 等, 吉林大学学报, 2025
煤岩组合体巴西劈裂动态力学特征数值分析
马泗洲 等, 高压物理学报, 2022
高地应力下岩体的爆破损伤及能量特性
梁瑞 等, 高压物理学报, 2022
Light-driven ammonia synthesis under mild conditions using lithium hydride
Guan, Yeqin et al., NATURE CHEMISTRY, 2024
Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates
DEFENCE TECHNOLOGY, 2024
Three-dimensional peridynamics based on matrix operation and its application in rock mass compression failure simulation
COMPUTERS AND GEOTECHNICS, 2025



下载:
百度学术