大应变率范围内AM80镁合金的变形行为及组织演变

郭鹏程 李健 曹淑芬 徐从昌 刘志文 李落星

郭鹏程, 李健, 曹淑芬, 徐从昌, 刘志文, 李落星. 大应变率范围内AM80镁合金的变形行为及组织演变[J]. 爆炸与冲击, 2018, 38(3): 586-595. doi: 10.11883/bzycj-2016-0266
引用本文: 郭鹏程, 李健, 曹淑芬, 徐从昌, 刘志文, 李落星. 大应变率范围内AM80镁合金的变形行为及组织演变[J]. 爆炸与冲击, 2018, 38(3): 586-595. doi: 10.11883/bzycj-2016-0266
GUO Pengcheng, LI Jian, CAO Shufen, XU Congchang, LIU Zhiwen, LI Luoxing. Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range[J]. Explosion And Shock Waves, 2018, 38(3): 586-595. doi: 10.11883/bzycj-2016-0266
Citation: GUO Pengcheng, LI Jian, CAO Shufen, XU Congchang, LIU Zhiwen, LI Luoxing. Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range[J]. Explosion And Shock Waves, 2018, 38(3): 586-595. doi: 10.11883/bzycj-2016-0266

大应变率范围内AM80镁合金的变形行为及组织演变

doi: 10.11883/bzycj-2016-0266
基金项目: 

国家自然科学基金项目 U1664252

国家重点研究计划项目 2016YFB0101700

详细信息
    作者简介:

    郭鹏程(1985-), 男, 博士研究生, 讲师

    通讯作者:

    李落星, llxly2000@163.com

  • 中图分类号: O347.1;TG142.1

Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range

  • 摘要: 采用INSTRON准静态压缩试验机和分离式霍普金森压杆装置,研究固溶态AM80镁合金在室温准静态和冲击载荷下的变形行为及组织演变。准静态载荷下,流变应力随应变率(3×10-5~4×10-1 s-1)的升高逐渐降低,表现为负应变率敏感性;冲击载荷下,流变应力随应变率(7.00×102~5.20×103 s-1)的升高而升高,呈现出明显的正应变率敏感性。冲击载荷下AM80镁合金的变形机制以基面滑移和孪生为主,大量细小致密的形变孪生以及适量非基面滑移的启动是AM80镁合金在冲击载荷下流变应力明显高于准静态载荷的重要原因。此外,随应变率的升高,AM80镁合金变形的均匀性明显增强,当应变速率升至3.65×103 s-1时,冲击变形所引起的局部绝热温升软化大于应变硬化与应变速率硬化的总和,部分晶粒产生了明显的动态回复,使得孪晶密度和变形均匀性反而降低。
  • 图  1  试样在圆柱形铸锭中的相对位置

    Figure  1.  Relative position of samples in the cylindrical ingot

    图  2  SHPB装置示意图

    Figure  2.  Schematic of SHPB apparatus

    图  3  AM80镁合金在准静态和高速冲击载荷下的真应力-真应变曲线

    Figure  3.  True stress-true strain curves of AM80 magnesium alloy at quasi-static and high-speed impact loads

    图  4  准静态和高速冲击载荷下AM80镁合金的应变硬化率曲线

    Figure  4.  Strain hardening rate curves of AM80 magnesium alloy at quasi-static and high-speed impact loads

    图  5  特定应变下真应力与应变率的关系曲线

    Figure  5.  True stress as a function of strain rate at specified stains

    图  6  高速冲击实验与J-C本构拟合真应力-真应变曲线

    Figure  6.  True stress-true strain curves of high-speed impact and J-C constitutive fitting results

    图  7  实验用未变形AM80镁合金的金相图

    Figure  7.  OM image of undeformed AM80 alloy used in experiment

    图  8  显微观测点在压缩试样中的相对位置

    Figure  8.  Relative positions for microstructure observation in compression sample

    图  9  应变率为3×10-5 s-1时压裂后的金相图

    Figure  9.  OM images of the fractured sample at 3×10-5 s-1 strain rate

    图  10  应变率为4×10-1 s-1时试样压裂后的金相图

    Figure  10.  OM images of the fractured sample at 4×10-1 s-1 strain rate

    图  11  试样在2.15×103 s-1的应变率下压缩至0.28应变后的金相图

    Figure  11.  OM images of the fractured sample with compressive strain of 0.28 at 2.15×103 s-1 strain rate

    图  12  试样在3.65×103 s-1的应变率下压缩至0.28应变后的金相图

    Figure  12.  OM images of the fractured sample with compressive strain of 0.28 at 3.65×103 s-1 strain rate

  • [1] KHAN A S, PANDEY A, GNAUPEL-HEROLD T, et al. Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures[J]. International Journal of Plasticity, 2011, 27(5):688-706. doi: 10.1016/j.ijplas.2010.08.009
    [2] AL-SAMMAN T, LI X, CHOWDHURY S G. Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy[J]. Materials Science and Engineering:A, 2010, 527(15):3450-3463. doi: 10.1016/j.msea.2010.02.008
    [3] ESKANDARI M, ZAREI-HANZAKI A, PILEHVA F, et al. Ductility improvement in AZ31 magnesium alloy using constrained compression testing technique[J]. Materials Science and Engineering:A, 2013, 576(6):74-81. https://www.sciencedirect.com/science/article/pii/S0921509313003201
    [4] LIU Xiao, JONAS J J, LI Luoxing, et al. Flow softening, twinning and dynamic recrystallization in AZ31 magnesium[J]. Materials Science and Engineering:A, 2013, 583(42):242-253. https://www.sciencedirect.com/science/article/pii/S092150931300734X
    [5] LIU Xiao, JONAS J J, ZHU Biwu, et al. Variant selection of primary extension twins in AZ31 magnesium deformed at 400℃[J]. Materials Science and Engineering:A, 2016, 649:461-467. doi: 10.1016/j.msea.2015.10.020
    [6] YE Tuo, LI Luoxing, GUO Pengcheng, et al. Effect of aging treatment on the microstructure and flow behavior of 6063 aluminum alloy compressed over a wide range of strain rate[J]. International Journal of Impact Engineering, 2016, 90:72-80. doi: 10.1016/j.ijimpeng.2015.12.005
    [7] Yokoyama T. Impact tensile stress-strain characteristics of wrought magnesium alloys[J]. Strain, 2003, 39(4):167-175. doi: 10.1046/j.1475-1305.2003.00086.x
    [8] WU B L, ZHANG Y D, WAN G, et al. Primary twinning selection with respect to orientation of deformed grains in ultra-rapidly compressed AZ31 alloy[J]. Materials Science and Engineering:A, 2012, 541:120-127. doi: 10.1016/j.msea.2012.02.012
    [9] WAN G, WU B L, ZHANG Y D, et al. Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy[J]. Materials Science and Engineering:A, 2010, 527(12):2915-2924. doi: 10.1016/j.msea.2010.01.023
    [10] MUKAI T, YAMANOI M, WATANABE H, et al. Effect of grain refinement on tensile ductility in ZK60 magnesium alloy under dynamic loading[J]. Materials Transactions, 2005, 42(7):1177-1181. http://cat.inist.fr/?aModele=afficheN&cpsidt=1102494
    [11] 毛萍莉, 刘正, 王长义, 等.高应变速率下AZ31B镁合金的压缩变形组织[J].中国有色金属学报, 2009, 19(5):816-820. http://www.ysxbcn.com/down/down_36237.html

    MAO Pingli, LIU Zheng, WANG Changyi, et al. Deformation microstructure of AZ31B magnesium alloy under high strain rate compression[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(5):816-820. http://www.ysxbcn.com/down/down_36237.html
    [12] 郭鹏程, 曹淑芬, 叶拓, 等.高速冲击载荷下AM80镁合金的力学本构及仿真模拟[J].中国有色金属学报, 2017, 27(6):1075-1082. http://www.ysxbcn.com/paper/paper_316358.html

    GUO Pengcheng, CAO Shufen, YE Tuo, et al. Mechanical constitutive equation and simulation of AM80 magnesium alloy uder high speed impact load[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6):1075-1082. http://www.ysxbcn.com/paper/paper_316358.html
    [13] MUKAI T, YAMANOI M, HIGASHI K. Processing of ductile magnesium alloy under dynamic tensile loading[J]. Materials Transactions, 2001, 42(12):2652-2654. doi: 10.2320/matertrans.42.2652
    [14] FENG Fei, HUANG Shangyu, MENG Zhenghua, et al. Experimental study on tensile property of AZ31B magnesium alloy at different high strain rates and temperatures[J]. Materials and Design, 2014, 57(5):10-20. https://www.sciencedirect.com/science/article/pii/S0261306913011643?_escaped_fragment_=
    [15] ULACIA I, DUDAMELL N V, GALVEZ F, et al. Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates[J]. Acta Materialia, 2010, 58(8):2988-2998. doi: 10.1016/j.actamat.2010.01.029
    [16] DUDAMELL N V, ULACIA I, GALVEZ F, et al. Influence of texture on the recrystallization mechanisms in an AZ31 Mg sheet alloy at dynamic rates[J]. Materials Science and Engineering:A, 2012, 532(1):528-535. http://www.sciencedirect.com/science/article/pii/S0921509311012391
    [17] MAO Pingli, LIU Zheng, WANG Changyi. Texture effect on high strain rates tension and compression deformation behavior of extruded AM30 alloy[J]. Materials Science and Engineering:A, 2012, 539(2):13-21. https://www.sciencedirect.com/science/article/pii/S0921509311014493
    [18] ZHAO Shiteng, MENG Chenlu, MAO Fengxin, et al. Influence of severe plastic deformation on dynamic strain aging of ultrafine grained Al-Mg alloys[J]. Acta Materialia, 2014, 76(2):54-67. https://www.sciencedirect.com/science/article/pii/S1359645414003425
    [19] 毛勇建, 李玉龙, 史飞飞.用经典Hopkinson杆测试弹性模量的初步探讨[J].固体力学学报, 2009, 30(2):170-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtlxxb200902010

    MAO Yongjian, LI Yulong, SHI Feifei. A discussion on determining Youg's moduli by conventional split Hopkinson bar[J]. Chinese Journal of Solid Mechanics, 2009, 30(2):170-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtlxxb200902010
    [20] 郭鹏程, 钱立和, 孟江英, 等.高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为[J].金属学报, 2014, 50(4):415-422. http://www.oalib.com/paper/4690981

    GUO Pengcheng, QIAN Lihe, MENG Jiangying, et al. Monotonic tension and tension-compression cyclic deformation behaviours of high manganese austenitic TWIP steel[J]. Acta Metallurgica Sinica, 2014, 50(4):415-422. http://www.oalib.com/paper/4690981
    [21] LEE W S, TANG Z C. Relationship between mechanical properties and microstructural response of 6061-T6 aluminum alloy impacted at elevated temperatures[J]. Materials and Design, 2014, 58(6):116-124. https://www.sciencedirect.com/science/article/pii/S026130691400082X
    [22] 胡昌明, 贺红亮, 胡时胜.45号钢的动态力学性能研究[J].爆炸与冲击, 2003, 23(2):188-192. http://www.bzycj.cn/CN/abstract/abstract10045.shtml

    HU Changming, HE Hongliang, HU Shisheng. A study on dynamic mechancial behaviors of 45 steel[J]. Explosion and Shock Waves, 2003, 23(2):188-192. http://www.bzycj.cn/CN/abstract/abstract10045.shtml
    [23] XIE Chao, FANG Qihong, LIU Xiao, et al. Theoretical study on the {1012} deformation twinning and cracking in coarse-grained AM80 magnesium alloys[J]. International Journal of Plasticity, 2016, 82:44-61. doi: 10.1016/j.ijplas.2016.02.001
    [24] AHMAD I R, SHU D W. Compressive and constitutive analysis of AZ31B magnesium alloy over a wide range of strain rates[J]. Metals and Materials International, 2015, 21(5):823-831. doi: 10.1007/s12540-015-5120-4
    [25] 刘庆.镁合金塑性变形机理研究进展[J].金属学报, 2010, 46(11):1458-1472. https://www.wenkuxiazai.com/doc/52292f28e009581b6ad9eb34.html

    LIU Qing. Research progress on plastic deformation mechanism of Mg alloys[J]. Acta Metallurgica Sinica, 2010, 46(11):1458-1472. https://www.wenkuxiazai.com/doc/52292f28e009581b6ad9eb34.html
    [26] YANG Yongbiao, WANG Fuchi, TAN Chengwen, et al. Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression[J]. Transactions of Nonferrous Metals Socity of China, 2008, 18(5):1043-1046. doi: 10.1016/S1003-6326(08)60178-8
  • 加载中
图(12)
计量
  • 文章访问数:  5541
  • HTML全文浏览量:  2131
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-30
  • 修回日期:  2017-02-22
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回