电炮加载下芳纶蜂窝夹芯板的动力响应

赵亚运 莫建军 谭福利 孙宇新 张进

赵亚运, 莫建军, 谭福利, 孙宇新, 张进. 电炮加载下芳纶蜂窝夹芯板的动力响应[J]. 爆炸与冲击, 2018, 38(1): 85-91. doi: 10.11883/bzycj-2016-0267
引用本文: 赵亚运, 莫建军, 谭福利, 孙宇新, 张进. 电炮加载下芳纶蜂窝夹芯板的动力响应[J]. 爆炸与冲击, 2018, 38(1): 85-91. doi: 10.11883/bzycj-2016-0267
ZHAO Yayun, MO Jianjun, TAN Fuli, SUN Yuxin, ZHANG Jin. Dynamic responses of aramid honeycomb sandwich panels loaded by an electric gun[J]. Explosion And Shock Waves, 2018, 38(1): 85-91. doi: 10.11883/bzycj-2016-0267
Citation: ZHAO Yayun, MO Jianjun, TAN Fuli, SUN Yuxin, ZHANG Jin. Dynamic responses of aramid honeycomb sandwich panels loaded by an electric gun[J]. Explosion And Shock Waves, 2018, 38(1): 85-91. doi: 10.11883/bzycj-2016-0267

电炮加载下芳纶蜂窝夹芯板的动力响应

doi: 10.11883/bzycj-2016-0267
详细信息
    作者简介:

    赵亚运(1990—),男,博士研究生

    通讯作者:

    孙宇新,yxsun01@163.com

  • 中图分类号: O347.3

Dynamic responses of aramid honeycomb sandwich panels loaded by an electric gun

  • 摘要: 研究了方形钛-芳纶蜂窝夹芯板在电炮驱动的高速聚酯飞片撞击加载下的动力响应,给出了面板和蜂窝芯层在不同冲击速度下的变形及失效模式。采用VISAR(velocity interferometer system for any reflector)测速技术测量了后面板中心点的速度时程,分析了芳纶蜂窝夹芯板的动态响应过程,讨论了冲击速度对夹芯板动力响应和抗冲击能力的影响。研究结果表明,低波阻抗的芳纶蜂窝破碎行为阻断了应力波向后面板的传播途径,破碎的蜂窝和塑形大变形的前面板吸收了高速冲击的大部分能量,充分发挥了钛合金的高强度和芳纶蜂窝的缓冲吸能特性,提高了夹芯板整体的防护能力。
  • 图  1  试件和蜂窝胞元的几何尺寸

    Figure  1.  Geometries and dimensions of the square specimen and honeycomb cell

    图  2  电炮放电回路原理图

    Figure  2.  A principle diagram for the discharge circuit of the electric gun

    图  3  实验试件安装结构示意图

    Figure  3.  Schematic diagram of the experimental setup

    图  4  试件前面板的层裂模式

    Figure  4.  Spallation modes for the front plates of the specimens

    图  5  试件A1层裂模式局部放大图

    Figure  5.  Enlarged spallation views for the front plate of Specimen A1

    图  6  层裂片

    Figure  6.  Photographs of spall scabs

    图  7  芳纶蜂窝夹芯典型破坏模式

    Figure  7.  Typical failure modes of aramid honeycomb cores

    图  8  后面板典型失效模式(试件A3)

    Figure  8.  Typical failure modes of the back plates (Specimen A3)

    图  9  蜂窝夹芯板的变形示意图

    Figure  9.  Sketches showing dynamic deformation of the sandwich panel with a honeycomb core

    图  10  VISAR测试得到的后面板背面测试点的速度历史曲线

    Figure  10.  Velocity-time curves measured by VISAR at the rear surfaces of the back plates

    图  11  在不同冲击速度下,试件的初始速度峰值和稳定变形速度

    Figure  11.  Initial peak velocities and steady velocities at different impact velocities for specimens

    表  1  实验得到的冲量和失效模式

    Table  1.   Impulses and deformation/failure modes obtained in experiments

    样品 vf/(km·s-1) I/(N·s) 前面板的失效模式
    A1 1.78 0.881 层裂模式Ⅰ
    A2 2.00 0.990 层裂模式Ⅱ
    A3 2.33 1.153 层裂模式Ⅱ
    A4 2.74 1.356 层裂冲塞模式
    下载: 导出CSV
  • [1] 王曙中.芳纶浆粕和芳纶纸的发展概况[J].高科技纤维与应用, 2009, 34(4):15-18. doi: 10.3969/j.issn.1007-9815.2009.04.003

    WANG Shuzhong. The state of development of PPTA-pulp and aramid paper[J]. Hi-Tech Fiber & Application, 2009, 34(4):15-18. doi: 10.3969/j.issn.1007-9815.2009.04.003
    [2] ZHU Feng, ZHAO Longmao, LU Guoxing, et al. Deformation and failure of blast-loaded metallic sandwich panels: Experimental investigations[J]. International Journal of Impact Engineering, 2008, 35(8):937-951. doi: 10.1016/j.ijimpeng.2007.11.003
    [3] NURICK G N, LANGDON G S, CHI Y, et al. Behaviour of sandwich panels subjected to intense air blast: Part 1: Experiments[J]. Composite Structures, 2009, 91(4):433-441. doi: 10.1016/j.compstruct.2009.04.009
    [4] AVACHAT S, ZHOU M. Effect of facesheet thickness on dynamic response of composite sandwich plates to underwater impulsive loading[J]. Experimental Mechanics, 2012, 52(1):83-93. doi: 10.1007/s11340-011-9538-4
    [5] FAN Zhiqiang, LIU Yingbin, XU Peng. Blast resistance of metallic sandwich panels subjected to proximity underwater explosion[J]. International Journal of Impact Engineering, 2016, 93:128-135. doi: 10.1016/j.ijimpeng.2016.03.001
    [6] GOLDSMITH W, SACKMAN J. An experimental study of energy absorption in impact on sandwich plates[J]. Économie Rurale, 2013, 204(3):58-59. http://www.researchgate.net/publication/245148666_An_experimental_study_of_energy_absorption_in_impact_on_sandwich_plates
    [7] HOU Weihong, ZHU Feng, LU Guoxing, et al. Ballistic impact experiments of metallic sandwich panels with aluminium foam core[J]. International Journal of Impact Engineering, 2010, 37(10):1045-1055. doi: 10.1016/j.ijimpeng.2010.03.006
    [8] YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact: An experimental study[J]. International Journal of Impact Engineering, 2015, 75:100-109. doi: 10.1016/j.ijimpeng.2014.07.019
    [9] DESHPANDE V S, FLECK N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3):277-298. doi: 10.1016/S0734-743X(99)00153-0
    [10] MUKAI T, KANAHASHI H, MIYOSHI T, et al. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading[J]. Scripta Materialia, 1999, 40(8):921-927. doi: 10.1016/S1359-6462(99)00038-X
    [11] CHAU H H, DITTBENNER G, HOFER W W, et al. Electric gun: A versatile tool for high-pressure shock-wave research[J]. Review of Scientific Instruments, 1980, 51(12):1676-1681. doi: 10.1063/1.1136155
    [12] 马春花, 刘玉.国产芳纶纸蜂窝性能的研究[J].高科技纤维与应用, 2013, 38(3):20-24. http://www.cnki.com.cn/Article/CJFDTotal-GKJQ201303004.htm

    MA Chunhua, LIU Yu. Study on the properties and applications of China's domestic aramid paper honeycomb[J]. Hi-Tech Fiber & Application, 2013, 38(3):20-24. http://www.cnki.com.cn/Article/CJFDTotal-GKJQ201303004.htm
    [13] 赵剑衡, 孙承纬, 唐小松, 等.高效能电炮实验装置的研制[J].实验力学, 2006, 21(3):369-375. http://d.old.wanfangdata.com.cn/Periodical/sylx200603018

    ZHAO Jianheng, SUN Chengwei, TANG Xiaosong, et al. Development of electric gun with high performance[J]. Journal of Experimental Mechanics, 2006, 21(3):369-375. http://d.old.wanfangdata.com.cn/Periodical/sylx200603018
    [14] 王礼立.应力波基础[M].北京:国防工业出版社, 1985:60-64.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  5094
  • HTML全文浏览量:  1269
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-01
  • 修回日期:  2016-12-19
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回