基于RGB颜色模型的玉米淀粉爆燃火焰传播速度

张洪铭 陈先锋 张英 牛奕 代华明 黄楚原

张洪铭, 陈先锋, 张英, 牛奕, 代华明, 黄楚原. 基于RGB颜色模型的玉米淀粉爆燃火焰传播速度[J]. 爆炸与冲击, 2018, 38(1): 133-139. doi: 10.11883/bzycj-2016-0278
引用本文: 张洪铭, 陈先锋, 张英, 牛奕, 代华明, 黄楚原. 基于RGB颜色模型的玉米淀粉爆燃火焰传播速度[J]. 爆炸与冲击, 2018, 38(1): 133-139. doi: 10.11883/bzycj-2016-0278
ZHANG Hongming, CHEN Xianfeng, ZHANG Ying, NIU Yi, DAI Huaming, HUANG Chuyuan. Flame propagation velocities of cornstarch dust explosion based on RGB color model[J]. Explosion And Shock Waves, 2018, 38(1): 133-139. doi: 10.11883/bzycj-2016-0278
Citation: ZHANG Hongming, CHEN Xianfeng, ZHANG Ying, NIU Yi, DAI Huaming, HUANG Chuyuan. Flame propagation velocities of cornstarch dust explosion based on RGB color model[J]. Explosion And Shock Waves, 2018, 38(1): 133-139. doi: 10.11883/bzycj-2016-0278

基于RGB颜色模型的玉米淀粉爆燃火焰传播速度

doi: 10.11883/bzycj-2016-0278
基金项目: 

国家重点研发计划项目 2016YFC0802801

国家自然科学基金项目 51374164

国家自然科学基金项目 51774221

详细信息
    作者简介:

    张洪铭(1989—),男,博士研究生

    通讯作者:

    陈先锋, cxf618@whut.edu.cn

  • 中图分类号: O389

Flame propagation velocities of cornstarch dust explosion based on RGB color model

  • 摘要: 采用小尺度粉尘爆炸实验装置对不同质量浓度的玉米淀粉爆燃火焰传播过程进行了实验研究,建立了基于RGB颜色模型的火焰重构及形态学重建的粉尘火焰传播速度计算方法,计算了不同质量浓度下的玉米淀粉爆燃火焰传播速度。结果表明:采用基于RGB颜色模型的速度计算方法能够快速准确地计算出玉米淀粉爆燃火焰传播速度,火焰像素范围的确定是火焰速度计算的关键;管道内火焰传播速度受粉尘云质量浓度的影响,最大火焰传播速度随粉尘云质量浓度的增大先增大后减小,到达速度峰值的时间先缩短后增长,当质量浓度为0.63 kg/m3时,出现该实验条件下火焰传播速度最大值7.03 m/s。
  • 图  1  实验系统组成图

    Figure  1.  Composition of the experimental system

    图  2  喷粉质量与管道内粉尘云质量浓度的关系

    Figure  2.  Dust mass concentration in experimental apparatus varied with mass of dispersed particles

    图  3  粉尘爆燃火焰R、G、B单通道分量图

    Figure  3.  Flame regions separated by R, G, B color components

    图  4  玉米淀粉爆燃火焰像素分布

    Figure  4.  Flame pixel distribution based on the rgb color space model

    图  5  玉米淀粉云火焰传播过程

    Figure  5.  Flame propagation process of cornstarch dust cloud

    图  6  火焰区域识别过程图

    Figure  6.  Recognition process of the flame region

    图  7  不同时刻的火焰锋面位置

    Figure  7.  Flame front positions at different times

    图  8  不同粉尘质量浓度下的火焰锋面位置及火焰传播速度曲线

    Figure  8.  Flame front positions and flame propagation velocity curves at different dust mass concentrations

    图  9  不同粉尘质量浓度下最大火焰传播速度和达到峰值速度的时间

    Figure  9.  Maximum flame propagation velocity and its arrival times at four dust mass concentrations

    表  1  不同粉尘云质量浓度下两种方法得到的火焰传播平均速度的对比

    Table  1.   Comparison of mean flame propagtion velocities at different dust mass concentrations by two measurement methods

    序号 ρ/(kg·m-3) v/(m·s-1) εv/%
    RGB模型 方法[1]
    1 0.36 2.08 1.99 4.52
    2 0.50 2.10 2.09 0.48
    3 0.63 2.63 2.52 3.57
    4 0.82 2.40 2.34 2.56
    下载: 导出CSV
  • [1] 陶可通, 陈先锋, 张洪铭, 等.玉米淀粉粉尘云浓度对其火焰传播特性的影响[J].中国安全科学学报, 2015, 25(5):37-41. https://www.wenkuxiazai.com/doc/1d42a9baf01dc281e43af083.html

    TAO Ketong, CHEN Xianfeng, ZHANG Hongming, et al. Effects of corn starch dust concentration on its flame propagation characteristics[J]. China Safety Science Journal, 2015, 25(5):37-41. https://www.wenkuxiazai.com/doc/1d42a9baf01dc281e43af083.html
    [2] 郭晶, 王庆.密闭空间煤粉爆炸特性的实验研究[J].爆破, 2017, 34(3):31-36. http://www.cqvip.com/QK/96961X/201703/673329345.html

    GUO Jing, WANG Qing. Experimental studies on explosion characteristics of coal dust in confined space[J]. Blasting, 2017, 34(3):31-36. http://www.cqvip.com/QK/96961X/201703/673329345.html
    [3] 徐维铮, 吴卫国.封闭空间爆炸载荷特性研究[J].爆破, 2017, 34(4):40-45. http://www.cqvip.com/QK/96961X/201704/674022987.html

    XU Weizheng, WU Weiguo. Investigation on characteristics of blasting loading in closed space[J]. Blasting, 2017, 34(4):40-45. http://www.cqvip.com/QK/96961X/201704/674022987.html
    [4] 丁以斌, 孙金华, 何学超, 等.锆粉尘云的火焰传播特性[J].燃烧科学与技术, 2010, 16(4):353-357. http://d.wanfangdata.com.cn/Periodical_rskxyjs201004011.aspx

    DING Yibin, SUN Jinhua, HE Xuechao, et al. Flame propagation characteristic of zirconium particle cloud[J]. Journal of Combustion Science and Technology, 2010, 16(4):353-357. http://d.wanfangdata.com.cn/Periodical_rskxyjs201004011.aspx
    [5] 王健, 李新光, 钟圣俊, 等.相连容器中粉尘爆炸的火焰传播[J].东北大学学报(自然科学版), 2010, 31(2):157-160. http://www.cqvip.com/QK/90188A/201002/33035359.html

    WANG Jian, LI Xinguang, ZHONG Shengjun, et al. On the flame propagation along pipeline during dust explosion between interconnected vessels[J]. Journal of Northeastern University (Natural Science), 2010, 31(2):157-160. http://www.cqvip.com/QK/90188A/201002/33035359.html
    [6] GAO W, MOGI T, SUN J, et al. Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions[J]. Powder Technology, 2013, 249:168-174. doi: 10.1016/j.powtec.2013.08.007
    [7] GAO W, DOBASHI R, MOGI T, et al. Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(6):993-999. doi: 10.1016/j.jlp.2012.05.015
    [8] 刘兵, 李春艳, 孙天旗, 等.离子电流法测量CH4/H2混合气燃烧火焰传播速度的实验研究[J].西安交通大学学报, 2015, 49(1):40-45. doi: 10.7652/xjtuxb201501007

    LIU Bing, LI Chuanyan, SUN Tianqi, et al. Measurement for flame speed of CH4/H2blends with ionic current method[J]. Journal of Xi'an Jiaotong University, 2015, 49(1):40-45. doi: 10.7652/xjtuxb201501007
    [9] OTSUKA T, WOLANSKI P. Particle image velocimetry (PIV) analysis of flame structure[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6):503-507. doi: 10.1016/S0950-4230(01)00045-6
    [10] DONG Y, VAGELOPOULOS C M, SPEDDING G R, et al. Measurement of laminar flame speeds through digital particle image velocimetry: Mixtures of methane and ethane with hydrogen, oxygen, nitrogen, and helium[J]. Proceedings of the Combustion Institute, 2002, 29(2):1419-1426. doi: 10.1016/S1540-7489(02)80174-2
    [11] 余明高, 郑凯, 郑立刚, 等.基于Matlab图像处理的瓦斯爆炸火焰传播速度研究[J].安全与环境学报, 2014, 14(1):6-9. http://cqvip.com/qk/97783X/201503/664656898.html

    YU Minggao, ZHENG Kai, ZHENG Ligang, et al. Flame propagation speed research of the gas explosion through image processing analysis based on Matlab[J]. Journal of Safety and Environment, 2014, 14(1):6-9. http://cqvip.com/qk/97783X/201503/664656898.html
    [12] NIE Baisheng, HE Xueqiu, WANG Cheng, et al. Computational method of the propagation velocity of methane explosion flame based on correlation coefficient of images[J].Combustion Science and Technology, 2015, 187(8):1157-1166. doi: 10.1080/00102202.2015.1019621
    [13] HAN S K, ARGHODE V K, LINCK M B, et al. Hydrogen addition effects in a confined swirl-stabilized methane-air flame[J]. International Journal of Hydrogen Energy, 2009, 34(2):1054-1062. doi: 10.1016/j.ijhydene.2008.10.034
    [14] 耿庆田, 于繁华, 赵宏伟, 等.基于颜色特征的火焰检测新算法[J].吉林大学学报(工学版), 2014, 11(6):1787-1972. http://www.cqvip.com/QK/95788A/201406/662905089.html

    GENG Qingtian, YU Fanhua, ZHAO Hongwei, et al. New algorithm of flame detection based on color features[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 11(6):1787-1972. http://www.cqvip.com/QK/95788A/201406/662905089.html
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  5342
  • HTML全文浏览量:  1818
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-12
  • 修回日期:  2016-12-15
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回