JBO-9021炸药的冲击起爆Pop关系

张涛 赵继波 伍星 刘雨生 刘艺 杨佳 谷岩

张涛, 赵继波, 伍星, 刘雨生, 刘艺, 杨佳, 谷岩. JBO-9021炸药的冲击起爆Pop关系[J]. 爆炸与冲击, 2018, 38(4): 743-748. doi: 10.11883/bzycj-2016-0330
引用本文: 张涛, 赵继波, 伍星, 刘雨生, 刘艺, 杨佳, 谷岩. JBO-9021炸药的冲击起爆Pop关系[J]. 爆炸与冲击, 2018, 38(4): 743-748. doi: 10.11883/bzycj-2016-0330
ZHANG Tao, ZHAO Jibo, WU Xing, LIU Yusheng, LIU Yi, YANG Jia, GU Yan. Pop relationship of JBO-9021 explosives[J]. Explosion And Shock Waves, 2018, 38(4): 743-748. doi: 10.11883/bzycj-2016-0330
Citation: ZHANG Tao, ZHAO Jibo, WU Xing, LIU Yusheng, LIU Yi, YANG Jia, GU Yan. Pop relationship of JBO-9021 explosives[J]. Explosion And Shock Waves, 2018, 38(4): 743-748. doi: 10.11883/bzycj-2016-0330

JBO-9021炸药的冲击起爆Pop关系

doi: 10.11883/bzycj-2016-0330
详细信息
    作者简介:

    张涛(1988-), 男, 硕士, 助理研究员

    通讯作者:

    谷岩, guyan@caep.cn

  • 中图分类号: O381

Pop relationship of JBO-9021 explosives

  • 摘要: 采用激光干涉测速技术和高速扫描相机,对新型钝感高能炸药JBO-9021(TATB、HMX和黏结剂的质量分数分别为80%、15%和5%)的冲击起爆Pop关系进行了研究。通过激光干涉测速技术获得了JBO-9021炸药冲击起爆过程中不同光纤探针处(即不同冲击波位置)的粒子起跳瞬时速度,结合未反应炸药的雨贡纽曲线,获得了粒子起跳点的冲击波压力;通过高速扫描相机获得冲击到爆轰距离,结合光纤探针所处位置,得到不同压力下JBO-9021炸药的冲击到爆轰距离,进而拟合出反映JBO-9021炸药冲击起爆性能的Pop关系曲线。结果显示,相对于TATB基PBX9502炸药和HMX基PBX9501炸药,JBO-9021炸药的冲击起爆性能更加优异。
  • 图  1  实验装置及测试系统

    Figure  1.  Experiment setup and measuring system

    图  2  实验装置实物

    Figure  2.  Actual experimental device

    图  3  JBO-9021炸药/LiF窗口界面up-t曲线

    Figure  3.  up-t curve of the interface of JBO-9021 explosive and LiF window

    图  4  修正后JBO-9021炸药波后粒子速度剖面

    Figure  4.  Rectified particle velocity-time curve for JBO-9021 explosive

    图  5  高速扫描相机测试结果

    Figure  5.  Result obtained using streak camera

    图  6  JBO-9021炸药的Pop关系

    Figure  6.  Pop-plot of JBO-9021 explosive

    表  1  实验结果

    Table  1.   Experimental results

    探针编号 h/mm s/mm up/(km·s-1) p/GPa
    1# 4 4.49 1.147 10.31
    2# 5 3.49 1.233 11.72
    3# 6 2.49 1.349 13.77
    4# 7 1.49 1.592 18.60
    5# 8 0.49 1.838 27.06
    下载: 导出CSV
  • [1] GUSTAVSEN R L, THOMPSON D G, OLINGER B W, et al. Shock initiation experiments on ratchet grown PBX 9502: LA-UR-10-01468[R]. Los Alamos: Los Alamos National Laboratory (LANL), 2010.
    [2] 张涛, 谷岩, 赵继波, 等.新型高能钝感炸药JBO-9X在较高冲击压力下冲击起爆过程的实验研究[J].火炸药学报, 2016, 39(1):28-33. http://www.cnki.com.cn/Article/CJFDTOTAL-BGXB201601005.htm

    ZHANG Tao, GU Yan, ZHAO Jibo, et al. Experimental study on shock initiation process of a new insensitive high explosive JBO-9X under high impact pressure[J]. Chinese Journal of Explosives & Propellants, 2016, 39(1):28-33. http://www.cnki.com.cn/Article/CJFDTOTAL-BGXB201601005.htm
    [3] BOUYER V, DOUCET M, DECARIS L. Experimental measurements of the detonation wave profile in a TATB based explosive[C]//EPJ Web of Conferences, EDP Sciences, 2010, 10: 00030.
    [4] BOUYER V, HEBERT P, DOUCET M, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives[J]. AIP Conference Proceedings, 2012, 1426(1):209-212. doi: 10.1063/1.3686256
    [5] SOLLIER A, MANCZUR P, CROUZET B, et al. Single and double shock initiation of TATB based explosive T2: comparison of electromagnetic gauge measurements with DNS using different reactive flow models[C]//Proceedings of the 14th Symposium (International) on Detonation. Coeur d'Alene, USA, 2010: 563-572.
    [6] 王桂吉, 赵同虎, 莫建军, 等.一种以TATB/HMX为基炸药的到爆轰距离[J].爆炸与冲击, 2006, 26(6):510-515. doi: 10.11883/1001-1455(2006)06-0510-06

    WANG Guiji, ZHAO Tonghu, MO Jianjun, et al. Run distance to detonation in a TATB/HMX-based explosive[J]. Explosion and Shock Waves, 2006, 26(6):510-515. doi: 10.11883/1001-1455(2006)06-0510-06
    [7] VANDERSALL K S, TARVER C M, GARCIA F, et al. Low amplitude single and multiple shock initiation experiments and modeling of LX-04: UCRL-CONF-222467[R]. Livermore: Lawrence Livermore National Laboratory (LLNL), 2006. http://www.researchgate.net/publication/255280754_LOW_AMPLITUDE_SINGLE_AND_MULTIPLE_SHOCK_INITIATION_EXPERIMENTS_AND_MODELING_OF_LX04
    [8] GUSTAVSEN R L, SHEFFIELD S A, ALCON R R, et al. Initiation of EDC-37 measured with embedded electromagnetic particle velocity gauges[J]. AIP Conference Proceedings, 2000, 505(1):879-882. doi: 10.1063/1.1303608
    [9] SHEFFIELD S A, GUSTAVSEN R L, ALCON R R. In-situ magnetic gauging technique used at LANL-method and shock information obtained[J]. AIP Conference Proceedings, 2000, 505(1):1043-1048. https://www.researchgate.net/profile/James_Langenbrunner
    [10] SHEFFIELD S A, BLOOMQUIST D D, TARVER C M. Subnanosecond measurements of detonation fronts in solid high explosives[J]. The Journal of Chemical Physics, 1984, 80(8):3831-3844. doi: 10.1063/1.447164
    [11] URTIEW P A, VANDERSALL K S, TARVER C M, et al. Shock initiation experiments and modeling of composition B, C-4, and ANFO[C]//Proceedings of the 13th Symposium (International) on Detonation. Norfolk, 2006: 432-439.
    [12] CHIDESTER S K, THOMPSON D G, VANDERSALL K S, et al. Shock initiation experiments on PBX 9501 explosive at pressures below 3 GPa with associated ignition and growth modeling[J]. AIP Conference Proceedings, 2007, 955(1):903-906. https://www.osti.gov/servlets/purl/920483
    [13] 张涛, 赵继波, 伍星, 等.未反应JBO-9021炸药冲击雨贡纽曲线的研究[J].高压物理学报, 2016, 30(6):457-462. doi: 10.11858/gywlxb.2016.06.004

    ZHANG Tao, ZHAO Jibo, WU Xing, et al. Hugoniot curve of unreacted JBO-9021 explosive[J]. Chinese Journal of High Pressure Physics, 2016, 30(6):457-462. doi: 10.11858/gywlxb.2016.06.004
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  5578
  • HTML全文浏览量:  1865
  • PDF下载量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-31
  • 修回日期:  2016-12-13
  • 刊出日期:  2018-07-25

目录

    /

    返回文章
    返回