Dynamic response of cold-formed thin-wall steel lipped channel under axial impact
-
摘要: 针对轴向冲击载荷下C型冷弯薄壁钢构件的动力响应,采用商业有限元软件Abaqus建立了能够反映冲击过程的有限元模型。通过对比有限元模拟和落锤实验中利用数字散斑技术采集的数据以及试样残余变形,验证了数值模型的可靠性。采用该模型分析了在不同冲击速度下翼缘、腹板和卷边质点的轴向位移-时间曲线以及腹板横向挠度的变化,结果表明:在较低冲击能量的作用下,翼缘对卷边的约束作用明显;而在较高冲击能量的加载过程中,冲击端卷边的轴向位移和速度明显大于翼缘和腹板,卷边破坏严重;随着冲击速度的提升,C型冷弯薄壁钢构件的动态屈曲临界载荷相应提升。Abstract: In our study, we established a finite element model using Abaqus, a commercially available software, to simulate the dynamic response of a cold-formed thin-wall steel lipped channel under axial compact, and verified its reliability by the highly consistent data and residual deformation obtained both from the finite element simulation and a drop hammer test. Based on the finite element model, we analyzed the axial displacement histories of the web, the flange and the lip, and the changing process of the web's lateral deflection under different impact energies. The results indicate that the axial displacement and the speed of the lip are significantly greater than those of the web and the flange during the loading process of higher impact energy, while the flange exerts an obvious constraint on the lip under lower impact energy. The dynamic critical load of the cold-formed steel channel under axial impact increases as the impact velocity goes up.
-
Key words:
- steel structure /
- dynamic response /
- drop hammer test /
- axial impact
-
表 1 非线性分析中引入的屈曲模态及比例系数
Table 1. Buckling modes and their proportional coefficients in nonlinear analysis
有限元模态 临界载荷/kN 模态分数/% 模态比重 缺陷幅值 Ⅰ 415.24 22.76 1.00 0.137 Ⅱ 440.53 21.46 0.94 0.129 Ⅲ 461.18 20.50 0.90 0.127 Ⅳ 504.07 18.76 0.84 0.115 Ⅴ 572.11 16.52 0.80 0.169 -
[1] 冷弯薄壁型钢结构技术规范: GB50018-2002[S]. 北京: 中国计划出版社, 2002. [2] AISI. Specification for the design of cold-formed steel structural members, cold-formed steel design manual-Part Ⅴ[M]. Washington D C: American Iron and Steel Institute, 2005. [3] ZEINODDINI V M, SCHAFER B W. Simulation of geometric imperfections in cold-formed steel members using spectral representation approach[J]. Thin-Walled Structures, 2012, 60:105-117. doi: 10.1016/j.tws.2012.07.001 [4] RUSINEK A, ZAERA R, KLEPACZKO J R. Constitutive relations in 3-D for a wide range of strain rates and temperatures-application to mild steels[J]. International Journal of Solids and Structures, 2007, 44(17):5611-5634. doi: 10.1016/j.ijsolstr.2007.01.015 [5] KENNY S, PEGG N, TAHERI F. Dynamic elastic buckling of a slender beam with geometric imperfections subject to an axial impulse[J]. Finite Elements in Analysis and Design, 2000, 35(3):227-246. doi: 10.1016/S0168-874X(99)00067-0 [6] BONADA J, CASAFONT M, ROURE F, et al. Selection of the initial geometrical imperfection in nonlinear FE analysis of cold-formed steel rack columns[J]. Thin-Walled Structures, 2012, 51:99-111. doi: 10.1016/j.tws.2011.10.003 [7] KARAGIOZOVA D, JONES N. Dynamic elastic-plastic buckling phenomena in a rod due to axial impact[J]. International Journal of Impact Engineering, 1996, 18(7/8):919-947. http://www.sciencedirect.com/science/article/pii/S0734743X96000358 [8] 肖刚. 结构在约束下和动力作用下屈曲的数值模拟[D]. 上海: 上海交通大学, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D060764 [9] VOLMIR S A. Nonlinear dynamics of plates and shells[M]. Moscow: Science, 1972. 期刊类型引用(19)
1. 成云海,许文涛,李峰辉,张修峰,胡兆锋. 煤体成分及微结构与卸荷弹射相关性分析. 采矿与安全工程学报. 2024(03): 570-578 . 百度学术
2. 王宇,郑子华,黎瑾,夏厚磊. 不同卸荷应力路径下砂岩时滞变形破坏特征研究. 岩石力学与工程学报. 2023(S1): 3400-3414 . 百度学术
3. 王伟祥,王志亮,贾帅龙,卢志堂. 动态载荷下大理岩断口形貌特征试验研究. 水文地质工程地质. 2022(03): 118-124 . 百度学术
4. 折海成,刘思其,胡再强. 基于SEM数字图像的岩石结构特征分析方法. 水电能源科学. 2022(11): 167-170+175 . 百度学术
5. 谭赢,刘希灵,赵宇喆. 基于巴西劈裂试验的岩石声发射特性及断口特征分析. 实验力学. 2021(02): 241-249 . 百度学术
6. 徐鼎平,郭广涛,夏跃林,柳秀洋,江权,李邵军,李治国. 高应力强卸荷下双江口花岗岩岩爆中间主应力效应宏细观试验研究. 岩土力学. 2021(09): 2375-2386 . 百度学术
7. 曹洋兵,陈杨涛,张遂,李新卫,沈红钱. 炭质页岩力学特性各向异性及其破坏机制研究. 福州大学学报(自然科学版). 2020(02): 244-250 . 百度学术
8. 王明旭. 胶结材料加载破坏的能量积聚与释放响应研究. 井冈山大学学报(自然科学版). 2020(01): 65-74 . 百度学术
9. 吝曼卿,张兰,刘夕奇,夏元友,张电吉,彭亚利. 梯度应力作用下模型试件的岩爆破坏细观分析. 岩土力学. 2020(09): 2984-2992 . 百度学术
10. 王帅,张向东,贾宝新. 矿震和采空区影响下围岩动力响应模型试验. 爆炸与冲击. 2019(01): 123-130 . 本站查看
11. 李柯萱,李铁. 不同加载速率下砂岩弯曲破坏的细观机理. 爆炸与冲击. 2019(04): 108-115 . 本站查看
12. 孙臣生. 基于改进MATLAB-BP神经网络算法的隧道岩爆预测模型. 重庆交通大学学报(自然科学版). 2019(10): 41-49 . 百度学术
13. 苏国韶,陈冠言,胡小川,梅诗明,黄小华. 花岗岩晶粒尺寸对岩爆影响的试验研究. 爆炸与冲击. 2019(12): 69-80 . 本站查看
14. 李回贵,李化敏,李长兴,陈善乐. 应用扫描电镜-X射线能谱研究神东矿区砂岩中结构面的微观结构及元素特征. 岩矿测试. 2018(01): 70-78 . 百度学术
15. Li Huamin,Li Huigui,Wang Kailin,Liu Chuang. Effect of rock composition microstructure and pore characteristics on its rock mechanics properties. International Journal of Mining Science and Technology. 2018(02): 303-308 . 必应学术
16. 王璐,王志亮,石高扬,石恒,田诺成. 热处理花岗岩循环冲击下断口形貌研究. 水利水运工程学报. 2018(05): 69-75 . 百度学术
17. 李立民. 秦岭输水隧洞花岗岩工程特性分析及地质灾害问题研究. 现代隧道技术. 2018(S2): 720-727 . 百度学术
18. 吝曼卿,张电吉,潘登,倪小山,习本军,杨丹丹. 磷块岩的岩爆碎屑细观分析与岩爆演化研究. 化工矿物与加工. 2017(05): 34-38 . 百度学术
19. 张电吉,杨丹丹,吝曼卿,习本军,倪小山,张卫中,潘登. 磷块岩地下开采的岩爆机理及处理对策. 武汉工程大学学报. 2017(06): 571-575 . 百度学术
其他类型引用(40)
-