飞机模型高速撞击钢筋混凝土载荷特性实验研究

温丽晶 张春明 郭超 段璞 张连生 段卓平

温丽晶, 张春明, 郭超, 段璞, 张连生, 段卓平. 飞机模型高速撞击钢筋混凝土载荷特性实验研究[J]. 爆炸与冲击, 2018, 38(4): 811-819. doi: 10.11883/bzycj-2016-0337
引用本文: 温丽晶, 张春明, 郭超, 段璞, 张连生, 段卓平. 飞机模型高速撞击钢筋混凝土载荷特性实验研究[J]. 爆炸与冲击, 2018, 38(4): 811-819. doi: 10.11883/bzycj-2016-0337
WEN Lijing, ZHANG Chunming, GUO Chao, DUAN Pu, ZHANG Liansheng, DUAN Zhuoping. Impact load characteristics of aircraft model impacting steel-reinforced concrete[J]. Explosion And Shock Waves, 2018, 38(4): 811-819. doi: 10.11883/bzycj-2016-0337
Citation: WEN Lijing, ZHANG Chunming, GUO Chao, DUAN Pu, ZHANG Liansheng, DUAN Zhuoping. Impact load characteristics of aircraft model impacting steel-reinforced concrete[J]. Explosion And Shock Waves, 2018, 38(4): 811-819. doi: 10.11883/bzycj-2016-0337

飞机模型高速撞击钢筋混凝土载荷特性实验研究

doi: 10.11883/bzycj-2016-0337
基金项目: 

国家科技重大专项项目 2013ZX06002001-015

详细信息
    作者简介:

    温丽晶(1981-), 女, 博士

    通讯作者:

    段卓平, duanzp@bit.edu.cn

  • 中图分类号: O342

Impact load characteristics of aircraft model impacting steel-reinforced concrete

  • 摘要: 为得到大型商用飞机撞击的冲击载荷特性及其计算方法,基于火箭橇加载试验平台,搭建了飞机模型撞击钢筋混凝土运动靶体测试系统,开展了两种不同尺寸飞机模型的撞击试验,利用高速摄影技术获得了飞机模型撞靶前的姿态、着速及飞机模型撞靶的破坏过程。采用加速度测试系统和激光干涉测速系统,分别得到撞击过程中运动靶体的加速度和速度历史,据此得到靶体受到的冲击载荷-时间曲线,二者吻合,验证了测试系统的可靠性。通过飞机模型上安装的机载存储过载测试系统,获得了撞击过程中飞机模型的负加速度-时间曲线,由此确定了修正的Riera理论模型中的静载荷项,并进一步计算得到靶体受到的冲击载荷-时间曲线,与通过测试靶体的加速度或速度得到的结果一致,验证了使用修正的Riera理论模型计算飞机模型冲击载荷的合理性及计算方法的正确性,同时确定了适合于本试验中飞机模型的修正系数α
  • 图  1  飞机模型1

    Figure  1.  Aircraft model 1

    图  2  飞机模型2

    Figure  2.  Aircraft model 2

    图  3  飞机模型1的线密度分布

    Figure  3.  Linear density distribution of aircraft model 1

    图  4  飞机模型2的线密度分布

    Figure  4.  Linear density distribution of aircraft model 2

    图  5  靶体系统结构

    Figure  5.  Structure of target system

    图  6  两个飞机模型撞击靶体过程照片

    Figure  6.  Photos of two aircraft models impacting targets

    图  7  试验后靶体和飞机模型的形貌

    Figure  7.  Aircraft models and targets after impact

    图  8  飞机模型1尾部上3个加速度传感器测得的信号

    Figure  8.  Acceleration histories measured by three acceleration sensors installed on rail of aircraft model 1

    图  9  靶体1背面安装的4个加速度传感器测得的加速度

    Figure  9.  Acceleration histories measured by four acceleration sensors installed on the back surface of target 1

    图  10  飞机模型1的加速度-时间曲线

    Figure  10.  Acceleration-time curve of aircraft model 1

    图  11  靶体1的加速度-时间曲线

    Figure  11.  Acceleration-time curve of target 1

    图  12  飞机模型2的加速度-时间曲线

    Figure  12.  Acceleration-time curve of aircraft model 2

    图  13  靶体2的加速度-时间曲线

    Figure  13.  Acceleration-time curve of target 2

    图  14  靶体1背后DISAR测得的速度-时间曲线

    Figure  14.  Velocity-time curve of target 1 measured by DISAR

    图  15  加速度传感器和DISAR得到的靶体1加速度对比

    Figure  15.  Comparison of target 1's accelerations obtained by acceleration sensors and DISAR

    图  16  飞机模型的压损载荷曲线

    Figure  16.  Crushing loads of aircraft model

    图  17  冲击载荷冲量的理论计算和试验测量结果对比

    Figure  17.  Comparison of impact load impulses calculated from different calculation methods and measured datas

    图  18  冲击载荷-时间曲线的理论计算和试验测量结果对比

    Figure  18.  Comparison between theoretical and experimental impact load-time histories

    表  1  飞机模型参数

    Table  1.   Parameters of aircraft models

    飞机模型 机长/mm 机身直径/mm 翼展/mm 机高/mm 质量/kg
    1 2 200 250 1 800 466 41
    2 3 800 400 3 600 861 105
    下载: 导出CSV

    表  2  靶体的设计参数

    Table  2.   Design parameters of target system

    靶体 靶体尺寸/(m×m×m) 靶体质量/kg 附属运动滑道质量/kg 靶体运动部分总质量/kg 飞机模型总质量/kg 靶体与飞机质量比
    1 1.5×1.5×0.4 2 350 562 2 912 41 71.0
    2 2.0×2.0×0.6 6 267 562 6 829 105 65.4
    下载: 导出CSV
  • [1] U. S. Nuclear Regulatory Commission. Domestic licensing of production and utilization facilities: 10 CFR Part 50[R]. Washington D C: U. S. Nuclear Regulatory Commission, 2009.
    [2] 国家核安全局. 核动力厂设计安全规定: HAF102[R]. 北京: 国家核安全局, 2016.
    [3] U. S. Nuclear Regulatory Commission. Guidance for the assessment of beyond-design-basis aircraft impacts: RG 1. 217[R]. Washington D C: U. S. Nuclear Regulatory Commission, 2011.
    [4] Nuclear Energy Institute. Methodology for performing aircraft impact assessments for new plant designs: NEI 97-13[R]. Walnut Creek: ERIN Engineering & Research, Inc., 2011.
    [5] RIERA J D. On the stress analysis of structures subjected to aircraft impact forces[J]. Nuclear Engineering and Design, 1968, 8(4):415-426. doi: 10.1016/0029-5493(68)90039-3
    [6] DRITTLER K, GRUNER P. The force resulting from impact of fast-flying military aircraft upon a rigid wall[J]. Nuclear Engineering and Design, 1976, 37(2):245-248. doi: 10.1016/0029-5493(76)90019-4
    [7] HORNYIK K. Analytic modeling of the impact of soft missiles on protective walls[C]//Transactions of the 4th International Conference on Structural Mechanics in Reactor Technology. San Francisco, USA: International Association for Structural Mechanics in Reactor Technology, 1977: 1-12. https://repository.lib.ncsu.edu/handle/1840.20/27857
    [8] KAR A K. Impactive effects of tornado missiles and aircraft[J].Journal of the Structural Division, 1979, 105(11):2243-2260. http://www.researchgate.net/publication/279587655_Impactive_Effects_of_Tornado_Missiles_and_Aircraft
    [9] EIBL J. Soft and hard impact[C]//Proceedings of the FIP Congress. Edinburgh, Scotland: The Concrete Society, Concrete for Hazard Protection, 1987: 175-186.
    [10] KOECHLIN P, POTAPOV S. Classification of soft and hard impacts: Application to aircraft crash[J]. Nuclear Engineering and Design, 2009, 239(4):613-618. doi: 10.1016/j.nucengdes.2008.10.016
    [11] SUGANO T, TSUBOTA H, KASAI Y, et al. Full-scale aircraft impact test for evaluation of impact force[J]. Nuclear Engineering and Design, 1993, 140(3):373-385. doi: 10.1016/0029-5493(93)90119-T
    [12] ARROS J, DOUMBALSKI N. Analysis of aircraft impact to concrete structures[J]. Nuclear Engineering and Design, 2007, 237(12/13):1241-1249. http://www.sciencedirect.com/science/article/pii/S0029549306005875
    [13] KOSTOV M, HENKEL F O, ANDONOV A. Safety assessment of A92 reactor building for large commercial aircraft crash[J]. Nuclear Engineering and Design, 2014, 269:262-267. doi: 10.1016/j.nucengdes.2013.08.038
    [14] 王远功, 余爱萍.飞机撞击核反应堆安全壳荷载-时间曲线的确定[J].核科学与工程, 1991, 11(3):208-215. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200708002027.htm

    WANG Yuangong, YU Aiping. The determination of load-time curve for a reactor containment which undergoes the impact of an airplane[J]. Chinese Journal of Nuclear Science and Engineering, 1991, 11(3):208-215. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200708002027.htm
    [15] 左家红.秦山核电厂安全壳在飞机撞击下的非线性分析[J].核科学与工程, 1992, 12(1), 35-42. http://www.cqvip.com/QK/98044X/199004/273561.html

    ZUO Jiahong. Non-linear analysis of Qinshan NPP containment under missile impact[J]. Chinese Journal of Nuclear Science and Engineering, 1992, 12(1):35-42. http://www.cqvip.com/QK/98044X/199004/273561.html
    [16] 王晓雯, 王明弹, 夏祖讽. 先进半球顶安全壳在飞机撞击下的动态响应分析[C]//第15届全国反应堆结构力学会议论文集. 北京: 原子能出版社, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7090892
    [17] 汤搏.关于核电厂防大型商用飞机撞击的要求——核电发展面临的新挑战[J].核安全, 2010(3):1-12. http://mall.cnki.net/magazine/Article/HAQY201003003.htm

    TANG Bo. Discussion on the impact of large commercial airplane to nuclear power plant[J]. Nuclear Safety, 2010(3):1-12. http://mall.cnki.net/magazine/Article/HAQY201003003.htm
    [18] 徐征宇.机撞击核岛屏蔽厂房的有限元分析[J].核科学与工程, 2010, 30(增刊1):309-313. https://www.wenkuxiazai.com/doc/2587c5e025c52cc58ad6be81.html

    XU Zhengyu. Finite element analysis for aircraft impact to shield building[J]. Chinese Journal of Nuclear Science and Engineering, 2010, 30(Suppl 1):309-313. https://www.wenkuxiazai.com/doc/2587c5e025c52cc58ad6be81.html
    [19] 刘晶波, 郑文凯.大型商用飞机撞击核电站屏蔽厂房荷载研究[J].振动与冲击, 2014, 33(6):97-101. doi: 10.13465/j.cnki.jvs.2014.06.018.html

    LIU Jingbo, ZHENG Wenkai. Impact load analysis on a nuclear power plant impacted by a large commercial aircraft[J]. Journal of Vibration and Shock, 2014, 33(6):97-101. doi: 10.13465/j.cnki.jvs.2014.06.018.html
    [20] 曹健伟, 方秦, 龚自明, 等.商用客机对核安全壳撞击破坏效应的数值模拟分析[J].工程力学, 2014, 31(9):63-70. http://www.oalib.com/paper/4192598

    CAO Jianwei, FANG Qin, GONG Ziming, et al. Numerical investigation on response and damage of nuclear containments under aircraft impact[J]. Engineering Mechanics, 2014, 31(9):63-70. http://www.oalib.com/paper/4192598
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  5340
  • HTML全文浏览量:  1981
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-02
  • 修回日期:  2017-07-21
  • 刊出日期:  2018-07-25

目录

    /

    返回文章
    返回