• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

椭球罩作用下的水下爆炸冲击波反射聚焦模型

郭锐 刘磊

郭锐, 刘磊. 椭球罩作用下的水下爆炸冲击波反射聚焦模型[J]. 爆炸与冲击, 2018, 38(1): 174-182. doi: 10.11883/bzycj-2017-0024
引用本文: 郭锐, 刘磊. 椭球罩作用下的水下爆炸冲击波反射聚焦模型[J]. 爆炸与冲击, 2018, 38(1): 174-182. doi: 10.11883/bzycj-2017-0024
Wu Liang, Li Feng, Lu Wenbo, Chen Ming, Xu Feng. Vibration velocity threshold of a tunnel adjacent to surrounding layered rocks under blasting load[J]. Explosion And Shock Waves, 2017, 37(2): 208-214. doi: 10.11883/1001-1455(2017)02-0208-07
Citation: GUO Rui, LIU Lei. Modeling on the reflection and focusing process of the underwater explosion shock waves by an ellipsoidal reflector[J]. Explosion And Shock Waves, 2018, 38(1): 174-182. doi: 10.11883/bzycj-2017-0024

椭球罩作用下的水下爆炸冲击波反射聚焦模型

doi: 10.11883/bzycj-2017-0024
基金项目: 

国家自然科学基金项目 11102088

中央高校基本科研业务费专项基金项目 30915118821

高等学校博士学科点专项科研基金项目 20133219110019

详细信息
    作者简介:

    郭锐(1980—),男,博士,副教授,guorui@njust.edu.cn

  • “第十一届全国爆炸力学学术会议”推荐论文
  • 中图分类号: O382.1;TB56

Modeling on the reflection and focusing process of the underwater explosion shock waves by an ellipsoidal reflector

  • 摘要: 基于冲击波传播、非线性反射和聚焦理论,建立水下爆炸冲击波在椭球罩作用下的反射聚焦模型。讨论自由传播、壁面反射和定向聚焦阶段的冲击波特性和压力计算方法,利用波前和波法线的近似方程构建压力场的数值计算域,进而模拟聚焦过程,并与现有实验结果进行对比,结果表明:所建模型可为正聚焦压力提供满足工程精度的预测,并能描述水下冲击波及产生的拉伸波聚焦过程中的一些细节;椭球罩能有效地聚焦水下冲击波,在动力学焦点附近获得有效增益区,在近轴方向上明显削弱冲击波压力衰减;理想条件下的动力学焦点一般位于几何焦点之前,但实际的反射罩变形和背向位移将使其发生后迁,甚至能越过几何焦点。
    1)  “第十一届全国爆炸力学学术会议”推荐论文
  • 图  1  冲击波在椭球罩作用下的非线性聚焦

    Figure  1.  Nonlinear focusing of shock waves by an ellipsoidal reflector

    图  2  非线性规则反射中反射角与入射角关系

    Figure  2.  Incident angle versus reflection angle in nonlinear regular reflection

    图  3  非线性和线性反射波面变化过程

    Figure  3.  Variation process of wave surface in nonlinear reflection against linear case

    图  4  反射聚焦过程的波前与波法线几何形状

    Figure  4.  Normal lines and fronts of shock waves in the focusing process

    图  5  直达波压力与距离关系的双对数曲线

    Figure  5.  Double logarithmic curve of direct peak pressure vs. distance

    图  6  聚焦压力脉动周期与距离关系曲线

    Figure  6.  Fluctuating period of focusing pressure vs. distance

    图  7  外聚焦的初始波前压力数值解与近似分布

    Figure  7.  Numerical solutions of pressures on initial wave front in outside focusing process and associated approximate distribution

    图  8  轴向压力波形对比

    Figure  8.  Comparison of axial pressure profiles

    图  9  压力场随时间的变化过程

    Figure  9.  Pressure field of underwater shock waves vs. propagation time

    图  10  聚焦压力峰值分布

    Figure  10.  Distribution of peak pressures of focusing waves

    图  11  聚焦压力增益分布

    Figure  11.  Distribution of pressures gains of focusing waves

  • [1] CLURE S M, WEINBERGER T. Extracorporeal shock wave therapy: Clinical applications and regulation[J]. Clinical Techniques in Equine Practice, 2003, 2(4):358-367. doi: 10.1053/j.ctep.2004.04.007
    [2] 李宁, 雷开卓, 黄建国, 等.水下冲击波聚焦声场非线性建模与分析[J].系统仿真学报, 2011, 23(1):61-64. http://d.wanfangdata.com.cn/Periodical_xtfzxb201101013.aspx

    LI Ning, LEI Kaizhuo, HUANG Jianguo, et al. Nonlinear modeling and analysis of underwater shock wave focusing sound field[J]. Journal of System Simulation, 2011, 23(1):61-64. http://d.wanfangdata.com.cn/Periodical_xtfzxb201101013.aspx
    [3] 陈景秋, 韦春霞, 邓艇, 等.体外冲击波碎石技术的力学机理的研究[J].力学进展, 2007, 37(4):590-599. doi: 10.6052/1000-0992-2007-4-J2006-139

    CHEN Jingqiu, WEI Chunxia, DENG Ting, et al. Studies on mechanical mechanism about stone comminution and tissue trauma in extracorporeal shock wave lithotripsy[J]. Advances in Mechanics, 2007, 37(4):590-599. doi: 10.6052/1000-0992-2007-4-J2006-139
    [4] RASSWEILER J J, KNOLL T, KÖHRMANN K U, et al. Shock wave technology and application: an update[J]. European. Urology, 2011, 59(5):784-796. doi: 10.1016/j.eururo.2011.02.033
    [5] MÜLLER H M. Focusing of shock waves in water by different ellipsoidal reflectors[C]//Proceedings of the 17th International Symposium on Shock Waves and Shock Tubes, Pennsylvania, USA, 1990: 143-148.
    [6] 陈景秋.激波聚焦问题的CCW数值解[J].重庆大学学报, 1992, 15(2):27-31. http://www.cqvip.com/QK/92166X/199202/966939.html

    CHEN Jingqiu. Numerical solutions of shock wave focusing with CCW method[J]. Journal of Chongqing University, 1992, 15(2):27-31. http://www.cqvip.com/QK/92166X/199202/966939.html
    [7] 韦春霞, 张永祥, 张晓艳, 等.球面压电式ESWL聚焦的实际焦点的数值分析[J].重庆大学学报, 2009, 32(1):21-26. doi: 10.11835/j.issn.1000-582X.2009.01.005

    WEI Chunxia, ZHANG Yongxiang, ZHANG Xiaoyan, et al. Numerical analysis of the shpehrical surface piezoelectricity ceramics extracorporeal shock wave lithotripsy launch[J]. Journal of Chongqing University, 2009, 32(1):21-26. doi: 10.11835/j.issn.1000-582X.2009.01.005
    [8] 雷开卓, 李宁, 黄建国, 等.椭球反射罩聚焦特性实验研究[J].西北工业大学学报, 2010, 28(2):102-106. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_xbgydxxb201001021

    LEI Kaizhuo, LI Ning, HUANG Jianguo, et al. Experimental research on focusing characteristics of the concave ellipsoidal reflectors[J]. Journal of Northwestern Polytechnical University, 2010, 28(2):102-106. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_xbgydxxb201001021
    [9] TAIEB D, RIBERT G, HADJADJ A. Numerical simulations of shock focusing over concave surfaces[J]. AIAA Journal, 2010, 48(8):1739-1747. doi: 10.2514/1.J050199
    [10] OSHITA D, HAMID S, HOSSEINI R, et al. Time-resolved high-speed visualization and analysis of underwater shock wave focusing generated by a magnetic pulse compression unit[J]. IEEE Transactions on Plasma Science, 2012, 40(10):2395-2400. doi: 10.1109/TPS.2012.2187541
    [11] 张振福. 水下冲击波聚焦的数值模拟与实验研究[D]. 长沙: 国防科技大学, 2012. http: //cdmd. cnki. com. cn/Article/CDMD-90002-1014048265. htm

    ZHANG Zhenfu. Numerical and experimental investigations on underwater shock wave focusing[D]. Changsha: National University of Defense Technology, 2012. http: //cdmd. cnki. com. cn/Article/CDMD-90002-1014048265. htm
    [12] COLEMAN A J, CHOI M J, SAUNDERS J E. Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter[J]. Ultrasound in Medicine & Biology, 1991, 17(3):245-255.
    [13] HAMlLTON M F. Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror[J]. Journal of the Acoustical Society of America, 1993, 93(3):1256-1266. doi: 10.1121/1.405410
    [14] 王鸿樟, 于洪斌, 黄平.连续球面波在凹椭球面上反射的聚焦声场[J].上海交通大学学报, 1996(1):65-69. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT601.011.htm

    WANG Hongzhang, YU Hongbin, HUANG Ping. Focused sound field due to reflection of spherical continuous wave from concave ellipsoidal surface[J]. Journal of Shanghai Jiaotong University, 1996(1):65-69. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT601.011.htm
    [15] CATES J E, STURTEVANT B. Shock wave focusing using geometrical shock dynamics[J]. Physics of Fluids, 1997, 9(10):3058-3068. doi: 10.1063/1.869414
    [16] ZHOU Y, ZHONG P. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter[J]. Journal of the Acoustical Society of America, 2006, 119(6):3625-3636. doi: 10.1121/1.2195074
    [17] LIU L, GUO R, CHEN L, et al. A prediction model for two-dimensional pressure distribution from underwater shock wave focusing by an ellipsoidal reflector[J]. Journal of the Acoustical Society of America, 2016, 140(6):4506-4516. doi: 10.1121/1.4971327
    [18] COURANT R, FRIEDRCHS R. Supersonic flow and shock waves[M]. New York: Interscience Publishers Inc., 1956:327-331.
    [19] COLE R H. Underwater explosions[M]. Princeton: Princeton University Press, 1948:110-120.
    [20] CHURCH C C. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter[J]. Journal of the Acoustical Society of America, 1989, 86(1):218-227. http://www.ncbi.nlm.nih.gov/pubmed/2754108
  • 期刊类型引用(30)

    1. 黄彬. 新建隧道开挖对既有平行隧道振动响应的影响分析. 西部交通科技. 2025(02): 149-152 . 百度学术
    2. 彭亚雄,周子霈,姚颖康,刘运思,左清军. 爆破作用下层状围岩隧道突变失稳判据研究. 中国安全科学学报. 2024(01): 171-178 . 百度学术
    3. 游元兴. 下穿桥梁隧道爆破参数设计分析. 运输经理世界. 2024(22): 83-85 . 百度学术
    4. 颜天成,张庆彬,陈敏. 新建隧道爆破对下部近接运营高铁隧道影响分析. 爆破. 2023(01): 185-193+220 . 百度学术
    5. 李阳. 下穿桥梁隧道爆破参数设计研究. 运输经理世界. 2023(22): 124-126 . 百度学术
    6. 邓祥辉,王靖媛,杨俊,王睿,丁潇. 地铁隧道爆破施工影响的邻近居民楼质点峰值振速研究. 地震工程学报. 2022(01): 17-21+45 . 百度学术
    7. 魏立恒,倪修能,郭洪雨,孙飞,葛艺超,夏兆平,王国波. 城市越岭长隧道爆破开挖振动影响研究. 爆破. 2022(01): 159-167 . 百度学术
    8. 张文康,熊承仁. 构造应力场中层状围岩隧道动力响应数值分析. 公路. 2021(01): 340-346 . 百度学术
    9. 梁书锋,凌天龙,李晨. 高铁长城站小净距隧道爆破振动效应研究. 爆破. 2021(01): 116-123+139 . 百度学术
    10. 赵玉荣. 隧道周围采石场机械开挖极限范围分析. 甘肃科技纵横. 2021(03): 46-48+81 . 百度学术
    11. 郭新新,汪波,王振宇,喻炜,马振旺. 爆破施工对既有裂缝、空洞隧道的动力影响. 地下空间与工程学报. 2021(02): 590-600 . 百度学术
    12. 徐海岩,王志杰,陈昌健,蔡李斌,李振,邓宇航,夏勇. 土砂互层隧道塌方及演变规律的模型试验研究. 岩土工程学报. 2021(06): 1050-1058 . 百度学术
    13. 郑军锋. 新建隧道爆破对邻近既有高铁隧道影响. 山西建筑. 2020(01): 119-121 . 百度学术
    14. 罗驰,杨新安,李坤,王斌,肖承倚. 隧道近区爆破振动动应变测试及其应用. 振动与冲击. 2020(02): 262-268 . 百度学术
    15. 高卫亮,王光勇,张运强. 爆破作用下山岭隧道衬砌动态响应分析. 应用力学学报. 2020(04): 1737-1744+1873 . 百度学术
    16. 涂颖,杨建华,代金豪. 大型地下洞室上层爆破开挖对下层围岩振动特性的影响. 长江科学院院报. 2020(09): 110-114 . 百度学术
    17. 高卫亮,王光勇,张运强. 在侧爆作用下既有山岭隧道支护结构动态响应分析. 应用力学学报. 2020(05): 2297-2302+2340 . 百度学术
    18. 曹峰,凌同华,张胜. 考虑应力波透射影响的公路隧道爆破振动速度安全阈值. 振动与冲击. 2020(23): 154-159 . 百度学术
    19. 陈雪峰,赵孝学,马浪,张龙,汪海波. 栗木山隧道层状硬岩掘进控制爆破技术. 安徽理工大学学报(自然科学版). 2019(01): 69-73 . 百度学术
    20. 武仁杰,李海波. SHPB冲击作用下层状千枚岩多尺度破坏机理研究. 爆炸与冲击. 2019(08): 108-117 . 本站查看
    21. 何忠明,蔡军,黄阜,刘雅欣. 基于能量法的连拱隧道钻爆施工对围岩损伤影响分析. 中国公路学报. 2019(09): 143-151+182 . 百度学术
    22. 姜立春,苏勇. 胶结充填体矿柱失稳的临界爆破振速理论模型及应用. 中国有色金属学报. 2019(11): 2663-2670 . 百度学术
    23. 杨文东,杨栋,夏杰. 爆破动荷载作用下的地下结构内力计算方法探讨. 爆破. 2018(01): 49-53 . 百度学术
    24. 陈雪峰,赵孝学,马浪,张龙,刘江华,梁红兵,汪海波. 层状节理岩体隧道钻爆参数优化研究. 公路. 2018(05): 323-325 . 百度学术
    25. 邓祥辉,杨俊,王睿,张永杰. 道路下浅埋隧道爆破施工振动影响的试验研究. 中国安全生产科学技术. 2018(07): 169-174 . 百度学术
    26. 王夏楠. 爆破扰动下巷道围岩临界破坏深度分析. 工矿自动化. 2018(07): 31-35 . 百度学术
    27. 杨建华,吴泽南,蒋水华,姚池,卢文波,周创兵. 深埋隧洞爆破开挖地应力瞬态卸荷诱发围岩振动控制方法研究. 岩石力学与工程学报. 2018(12): 2751-2761 . 百度学术
    28. 张龙,覃羽诗,孙懿. 隧道爆破施工对既有管道影响的有限元分析. 江苏建筑职业技术学院学报. 2018(04): 1-4 . 百度学术
    29. 廖伟逸,袁辉,王凤山. 基于解释结构模型的公路隧道口部滑塌影响因素分析. 安全与环境工程. 2017(06): 134-138 . 百度学术
    30. 蔡清池,刘春,姜泽. 爆破下质点峰值振速大小的多元回归分析. 三明学院学报. 2017(04): 83-87 . 百度学术

    其他类型引用(15)

  • 加载中
图(11)
计量
  • 文章访问数:  5861
  • HTML全文浏览量:  1360
  • PDF下载量:  224
  • 被引次数: 45
出版历程
  • 收稿日期:  2017-01-17
  • 修回日期:  2017-03-02
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回