Microstructure and erosive resistance of wear-resistant coating on the throttling ring of gun recoil brake
-
摘要: 火炮驻退机的节制环经常由于冲蚀磨损导致失效。为有效减少节制环磨损程度,提高节制环的可靠性,利用材料表面强化技术,通过微弧沉积与激光熔覆2种技术工艺,制备了铜基合金和镍基合金耐磨涂层,并测试和分析了不同种类涂层的组织形貌、涂层质量及显微硬度。在制备的4种耐磨涂层中,微弧沉积铜基合金涂层和激光熔覆镍基合金涂层的性能较好。为检验合金涂层的实际耐磨性能,在驻退机内安装节制环改进件,在反后坐装置试验台上实施后坐冲击试验。从节制环改进件的磨损形貌和冲蚀磨损量等实验数据得出,激光熔覆镍基合金涂层有较好的耐磨能力,可以作为增强火炮驻退机节制环耐磨能力的有效方法。Abstract: The throttling ring is the key component of a gun recoil brake, erosion wear is the main reason for the failure of the throttling ring. In order to improve the erosive resistance ability and the inherent reliability of throttling ring, with the help of material surface strengthening technology, the wear-resistant alloy coatings on the inner diameter surface of throttling ring were prepared by micro arc deposition and laser cladding coating technology, Cu-based alloy and Ni-based alloy were selected to prepare wear-resistant coatings. Through the microstructure observation, micro hardness test and coating quality comparison of four kinds of wear-resistant coatings, two kinds of coatings were eliminated. In order to test the erosive resistance, the improvd throttling rings were installed on the recoil brake. Erosion wear tests were carried out by recoil mechanism test bench. Wear morphology and wear weight loss of improvement parts are compared under the same conditions. Finally, according to the comprehensive analysis of microstructure, microhardness, energy spectrum and erosion wear test results of wear resistant coatings, it is concluded that the Ni-based alloy coating by laser cladding technology shows the best performance in the above four types of coatings, indicating it is an effective means to improve erosive resistance of the throttling ring.
-
Key words:
- throttling ring /
- erosion wear /
- alloy coating /
- micro arc deposition /
- laser cladding /
- reliability
-
塑性粘结炸药(polymer-bonded explosive, PBX)是一种以高能炸药为主体,添加了黏结剂、增塑剂和降感剂等辅助材料制成的高能钝感的混合炸药。与TNT相比,PBX炸药具有能量高、感度低、强度高等优点。PBX炸药作为一种高颗粒填充度的复合材料,在外部载荷作用下,会发生结构的微细观损伤变化[1-4]。这些损伤一方面使炸药力学性能劣化,降低其物理性能;另一方面,在动载下或冲击载荷载荷下,产生的微细观损伤加剧了“热点”的形成,进而影响炸药的感度、燃烧和爆炸性质。因此,开展PBX炸药的动态力学性能研究,有利于分析复杂环境中炸药材料力学性能的演化规律,对评估和提高炸药的安全性能具有重要理论和实践意义。
PBX炸药在高应变率动态加载下的非线性、黏弹性、大变形特征等均有重要影响。但研究者们在建立PBX的本构模型时,一般仅考虑材料的非线性,少数关注到其黏弹性效应,更少考虑材料在动态加载后的损伤。目前关于黏弹性效应及大变形力学行为已经分别在高分子材料、推进剂及橡胶类材料有了相对较为成熟的研究。Song等[5]在进行EPDM橡胶材料的单轴冲击压缩实验时,发现材料在高应变率下具有较为明显的黏弹性效应,仅仅选择单一的橡胶超弹模型无法精确描述EPDM在冲击下的力学行为,这种差别在变形较小的时候尤为明显。为此,他们将橡胶超弹模型和黏弹性模型结合,并将得到的混合模型用于准静态及冲击力学行为描述。王宝珍等[6]也采取了相似的办法,将Mooney超弹模型和黏弹性模型结合,亦能较好的描述CR橡胶在不同温度(−20~50 ℃)和应变率(5×10−3~3×103 s−1)下的力学性能。此类模型难以同时表示出准静态和冲击载荷下的力学特性,并且难以描述高变率下的力学行为[7]。朱兆祥、王礼立和唐志平等以有限黏弹性本构方程为基础,从Green-Rivlin本构理论出发,提出了一个适用于热塑性和热固性材料用的“朱-王-唐”本构模型(简称为Z-W-T模型)来描述高分子材料的非线性黏弹性行为[8-10]。以上提及的Mooney模型等,不能描述高应变率下的损伤行为;ZWT模型可较好地表征PBX炸药的基本力学性能,但不能描述损伤,因此,需要进行ZWT模型的改进,增加损伤行为的描述。
为研究PBX-1的压缩力学性能和本构关系,本文以一种新型抗过载浇铸PBX炸药为研究对象,分别进行准静态力学实验和SHPB(分离式霍普金森压杆)实验研究,对比不同加载条件下PBX-1的响应情况,利用Z-W-T模型,建立含损伤的非线性黏弹性本构模型,并与动态力学性能测试结果分析对比,建立高应变率下的PBX-1本构关系,为描述PBX炸药的力学行为提供参考。
1. PBX-1 炸药力学实验
1.1 准静态力学实验
PBX-1炸药主要组成为:奥克托今(HMX)、铝粉(Al)、高氯酸铵(AP)、端羟基聚丁二烯(HTPB)等,浇铸成型。按照GJB 772A/1997标准相关测试要求,进行PBX-1炸药的准静态力学实验测试。采用
∅ 20 mm×20 mm的圆柱型炸药试样,在室温23 ℃、相对湿度55%和加载速度0.5 mm·min−1(对应应变率为4.17×10−4 s−1)情况下进行了准静态压缩实验。图1为准静态压缩实验中试样表面裂纹形貌图。裂纹出现在与加载方向大约成45°的最大剪应力方向,试样的宏观破坏形式为劈裂。为了研究炸药晶体与黏结剂等在外界压力作用下的响应,采用型号为KYKY-2800B的扫描电子显微镜,对准静态试验中PBX-1炸药试样断面形貌进行观测,扫描结果如图2所示。图2(a)展示了炸药内部广泛存在的微小空洞等初始缺陷。图2(b)和图2(c)展示了在断面上炸药晶体与黏结剂之间的互相分离以及黏结剂的断裂。由于局部温度分布和炸药晶体与黏结剂两者亲疏性差异,炸药晶体很难被黏结剂均匀包覆。在挤压作用下,晶体与黏结剂之间的粘聚力将存在一定差别,使得断面上的晶体部分发生挤压破碎,而粘聚力强的晶体则仍然与黏结剂保持在一起,如图2(d)所示。在准静态测试加载条件下,PBX-1炸药的细观破坏模式主要为炸药晶体与黏结剂的分离以及黏结剂的断裂。
1.2 SHPB实验
采用分离式霍普金森压杆(split-Hopkinson pressure bar,SHPB)进行PBX-1炸药的动态力学性能测试。SHPB是动态力学测试手段中应用最为广泛的技术之一。由于炸药材料的低波阻抗特性和低强度,传统的SHPB将很难获得清晰的应力-应变信号。因此,本文采用波阻抗较低的高强合金铝作为杆材料,并采用铜、黄铜等材料作为波形整形器的材料。试验中,通过在入射杆撞击端中心位置粘贴单个或组合的波形整形器,使子弹在加载过程中先撞击波形整形器。通过整形器产生的塑性变形等将应力脉冲进行整形,然后再撞击入射杆,最终传至入射杆中的是经过滤波整形的波形。为了抑制入射杆和投射杆端面与试件之间的摩擦影响,在界面上涂覆了以二硫化钼为主要成分的降低摩擦的材料。
采用的试件尺寸是
∅ 10 mm×10 mm,密度为1.86 g/cm3,加载速度范围为:1.7~10.4 m/s。利用高速CCD相机记录了试样在冲击过程中的变形状态。图3分别为加载速度是3.4和10.4 m/s条件下的试样破坏情况。可以看出,试样经过冲击加载后,没有发生粉碎性破坏,在10.4 m/s弹速加载后仍然保持较好的完整性,加载后的试样均保持了较好的圆柱状,没有明显的鼓起,这说明端面摩擦得到了较好的抑制。PBX炸药内的高聚物粘结剂具有较好的吸能和缓冲效果,且由于高聚物的粘弹性特性及其组成的高聚物基体,炸药内部广泛存在的粘结剂将吸收和储存了撞击产生的能量,使PBX炸药中炸药颗粒承受的外界作用力降低,因而具有较好的韧性和承载能力,出现裂纹后仍然具有一定的结构强度,使得PBX炸药在冲击作用下承受冲击加载的能力提高。图4为PBX-1炸药从100~1 500 s−1应变率范围内的应力-应变曲线,其中,应变率为100 s−1时,没有达到材料的破坏强度。作为对比,图4还给出了PBX-1的准静态压缩曲线。随着应变率的提高,PBX-1炸药的动态屈服强度不断提高,逐渐从准静态的2.77 MPa提高到1 500 s−1冲击加载下的16.1 MPa,说明PBX-1炸药具有明显的应变率效应。但与准静态加载不同,变形初期各应力-应变曲线基本重合在一起,应变率效应较弱,其斜率约为270 MPa。该阶段体现了粘结剂的弹性以及炸药晶粒与粘结剂界面的强度特性,在发生界面脱粘及炸药晶粒破碎之前,PBX-1炸药可看成一个均匀的弹性结构。继续加载后,炸药晶粒/粘结剂界面、内部气泡与孔穴等弱结构开始破坏,加载速度不同,材料内部裂纹等的发展速度也不同,因此曲线逐渐分离。从数值上看,材料具有较高的动态压缩强度和破坏应变,说明PBX-1炸药具有较强韧性和抗冲击破坏能力。
图5为PBX-1炸药的强度和失效应变随应变率变化关系曲线。随着加载速率的增加,PBX-1的动态压缩强度和破坏应变均随之增加,应变率从330 s−1增加到1 500 s−1时,压缩强度从7.46 MPa增加至16.1 MPa(准静态压缩强度2.77 MPa),破坏应变从6.23%增加到26.4%。因此,随着加载速度的提高,PBX-1炸药的动态屈服与失效应变均不断提高。
2. 含损伤Z-W-T本构模型
Z-W-T非线性粘弹本构模型由一个非线性弹簧、一个低频Maxwell体和一个高频Maxwell体三者并联所组成,如图6所示。积分形式的Z-W-T方程为:
σ=fe(ε)+E1∫t0˙εexp(−t−τθ1)dτ+E2∫t0˙εexp(−t−τθ2)dτ(1) 式中: ε为应变;
fe(ε) 为高分子材料的非线性弹性响应项,fe(ε)=E0ε+αε2+βε3 ,E0、α和β是对应的弹性常数;第二项描述低应变率下的黏弹性响应,E1和θ1分别是所对应的低频Maxwell单元的弹性常数和松弛时间;第三项描述高应变率下的黏弹性响应,E2和θ2分别是所对应的高频Maxwell单元的弹性常数和松弛时间。式(1)只能描述黏弹性特性,并未描述材料屈服和损伤演化。将材料损伤演化参数引入其中,可以建立考虑黏弹性损伤的Z-W-T模型[11-12]:
σ=(1−D)[fe(ε)+E1∫t0˙εexp(−t−τθ1)dτ+E2∫t0˙εexp(−t−τθ2)dτ] (2) 式中:D为损伤因子,0≤D≤1,具体表达式如下:
D={0ε≤εthD0˙εδ−1(ε−εth)bε>εth (3) 式中:εth是损伤发生演化时的应变阈值;D0是初始损伤因子;b是损伤应变指数因子;δ是率相关的指数因子,δ>1是随着应变率的增加,破坏应变减少,即冲击脆化;δ<1是随着应变率的增加,破坏应变增加,即所谓的冲击韧化;δ=1时可简化为临界应变准则。
结合PBX-1炸药的力学行为特征,对Z-W-T模型进行了修正:
σ=[1−(D0+D1(˙ε˙ε0))c−1εa][σm(1−exp(−mε))+E2∫t0˙εexp(−t−τθ2)dτ] (4) 式中:D0、D1、c、a、σm、m为材料常数。
在对参数进行拟合时,利用了PBX-1在330 s−1、490 s−1、1 080 s−1、1 500 s−1等4种应变率下的应力应变曲线,如图7所示。首先,通过选取两种不同应变率下的应力应变曲线相减,并通过遗传算法拟合[13]得到D0、D1、c、a、σm;再把参数代入式(4)中,通过高应变率下的应力-应变曲线拟合出m、E2、θ2,得到7个参数,如表1所示。
表 1 本构模型材料参数Table 1. Parameter values of constitutive modelsD0 D1 c a σm/MPa m E2/MPa θ2/μs 8.591 −0.484 1.167 5.480 5.480 43.687 101.156 75.482 图8为模型计算曲线与实验测试曲线对比。本构模型在应变率为660 s−1时与实验测试曲线重合结果较高,能较好地描述PBX-1炸药在达到破坏前的动态力学行为。在不考虑材料分散性和实验偶然误差的情况下,按照图8所拟合PBX-1炸药的应变-压缩强度曲线,其在660 s−1时破坏强度为9.12 MPa,说明在达到破坏点之前,模型预测与实验测试结果误差不超过3%,表明修正后的模型具有较高的精度,能较好地描述浇铸PBX-1炸药动态加载下的力学行为。当应变率大于0.11时,数值模拟结果略小于实验值,误差在4%~6%之间,这是由于遗传算法拟合修正的ZWT模型参数有一定的误差,体现在数值模拟结果上为随着应变的逐步增大,应力值小于实验结果。
3. 结 论
本文以一种新型抗过载浇铸PBX炸药为研究对象,通过准静态力学实验和SHPB实验对PBX-1炸药的压缩力学性能进行测定,并利用含损伤的Z-W-T非线性黏弹性本构模型,拟合得出了其在高应变率下的本构关系,对比动态力学性能测试结果,主要有以下结论:
(1)准静态压缩实验中,试样的裂纹出现在与加载方向大约成45°的最大剪应力方向,宏观破坏形式为劈裂;
(2)SHPB实验中,随着应变率的提高,PBX-1炸药的动态屈服强度、动态压缩强度和破坏应变不断提高。动态屈服强度逐渐从静态的2.77 MPa增加至16.1 MPa;压缩强度从7.46 MPa增加至16.1 MPa,破坏应变从6.23%增加到26.4%;
(3)基于PBX炸药材料损伤和应变率效应,通过遗传算法拟合,建立了一种含损伤的动态黏弹性本构模型,在330~1 500 s−1应变率范围内具有较高的精度,可以较好地描述PBX-1炸药在达到破坏前的动态力学行为。
-
表 1 合金涂层材料成分含量表
Table 1. Element content of alloy coating
(%) 铜基合金 Ni Fe Al Cr Mo C Cu 质量分数 17.5 8.6 6.5 6.0 1.5 0.8 余量 镍基合金 Cr W Fe Cu Si C Ni 质量分数 12.0 8.5 6.0 4.2 1.6 1.0 余量 表 2 微弧沉积涂层工艺参数
Table 2. Process parameters of MAD coating
输出电压/
V放电频率/
Hz电极尺寸/
(mm×mm)输出功率/
kW电极角度/
(°)扫描速度/
(mm·s-1)气体流速/
(L·min-1)80 140 3.2×80 2.0 35 2.6 12 表 3 激光熔覆涂层工艺参数
Table 3. Process parameters of laser cladding coating
粉末厚度/mm 粉末宽度/mm 透镜焦距/mm 激光功率/kW 光斑直径/mm 扫描速度/(mm·s-1) 脉宽/ms 0.4 15 165 2.5 1.75 12 10 表 4 不同合金涂层分析结果对比
Table 4. Quality comparison of four kinds of alloy coatings
样品 涂层显微组织形貌 涂层平均厚度/μm 涂层厚度均匀性 涂层显微硬度 涂层W1(铜基) 无裂纹 80 厚薄不均 560 涂层W2(镍基) 有裂纹 80 厚薄不均 630 涂层R1(铜基) 有裂纹和孔隙 140 均匀致密 440 涂层R2(镍基) 无裂纹 140 均匀致密 460 表 5 节制环改进件的性能参数
Table 5. Performance parameters of improved throttling ring
节制环改进件 涂层显微组织形貌 涂层厚度/
μm图层厚度均匀性 显微硬度 冲蚀磨损量/
g改进件W1
(铜基合金)无裂纹、无孔隙 80 厚薄不均 560 0.47 改进件R2
(镍基合金)无裂纹、无孔隙 140 均匀致密 460 0.26 -
[1] 崔凯波, 秦俊奇, 狄长春, 等.火炮制退机节制环失效微观机理的实验研究[J].爆炸与冲击, 2014, 34(6):736-741. http://www.bzycj.cn/CN/abstract/abstract9410.shtmlCUI Kaibo, QIN Junqi, DI Changchun, et al. Experimental research on microscopic failure mechanism of the throttling ring in a gun recoil brake[J]. Explosion and Shock Waves, 2014, 34(6):736-741. http://www.bzycj.cn/CN/abstract/abstract9410.shtml [2] 王斐, 陈永才, 狄长春, 等.PCrNi3MoVA钢表面微弧沉积Stellite6合金涂层研究[J].热加工工艺, 2015, 44(20):142-145. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SJGY201520040&dbname=CJFD&dbcode=CJFQWANG Fei, CHEN Yongcai, DI Changchun, et al. Study on micro arc deposit sellite6 alloy coating on PCrNi3MoVA steel surface[J]. Hot Working Technology, 2015, 44(20):142-145. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SJGY201520040&dbname=CJFD&dbcode=CJFQ [3] 任延杰, 陈荐, 何建军.汽轮机叶片钢表面高能微弧沉积316L不锈钢涂层优化工艺[J].长沙理工大学学报(自然科学版), 2009, 6(1):55-58. doi: 10.3969/j.issn.1672-9331.2009.01.011REN Yanjie, CHEN Jian, HE Jianjun. Optimization of preparation parameters for 316L stainless steel deposition on steam turbine blades by high-energy micro-arc process[J]. Journal of Changsha University of Science & Technology (Natural Science), 2009, 6(1):55-58. doi: 10.3969/j.issn.1672-9331.2009.01.011 [4] HAN B, ZHANG M K, QI C H, et al. Characterization and friction-reduction performances of composite coating produced by laser cladding and ion sulfurizing[J]. Materials Letters, 2015, 150:35-38. doi: 10.1016/j.matlet.2015.02.098 [5] SAQIB S, URBANIC R J, AGGARWAL K. Analysis of laser cladding bead morphology for developing additive manufacturing travel paths[J]. Procedia Cirp, 2014, 17:824-829. doi: 10.1016/j.procir.2014.01.098 [6] SUN R L, LEI Y W, NIU W. Laser clad TiC reinforced NiCrBSi composite coatings on Ti-6Al-4V alloy using a CW CO2 laser[J]. Surface & Coatings Technology, 2009, 203:1395-1399. [7] HE X M, LIU X B, WANG M D, et al. Elevated temperature dry sliding wear behavior of nickel-based composite coating on austenitic stainless steel deposited by a novel central hollow laser cladding[J]. Applied Surface Science, 2011, 258(1):535-541. doi: 10.1016/j.apsusc.2011.08.072 [8] 王少青.阴极微弧沉积制备铝合金热障涂层及数值模拟[D].西安: 西安工业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10702-1013174580.htm [9] 杨艳峰, 郑坚, 狄长春, 等.火炮用PCrMo钢激光熔覆MoS2润滑涂层摩擦学性能研究[J].摩擦学学报, 2016, 36(2):240-246. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MCXX201602017&dbname=CJFD&dbcode=CJFQYANG Yanfeng, ZHENG Jian, DI Changchun, et al. Tribological properties of MoS2 lubricating coating on gun used PCrMo steel by laser cladding[J]. Tribology, 2016, 36(2):240-246. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MCXX201602017&dbname=CJFD&dbcode=CJFQ [10] 朱红梅, 龚文娟, 易志威, 等.AZ91镁合金表面激光熔覆Al-Cu合金涂层的组织与性能[J].中国有色金属学报, 2016, 26(7):1498-1504. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201607018ZHU Hongmei, GONG Wenjuan, YI Zhiwei, et al. Microstructure and property of laser cladding Al-Cu alloy coating on surface of AZ91 magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(7):1498-1504. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201607018 [11] 宣天鹏.材料表面功能镀覆层及其应用[M].北京:机械工业出版社, 2008. [12] 陈长军, 王茂才, 王东生, 等.高能微弧火花作用下Al-Nd合金在AZ31镁合金表面沉积行为[J].金属热处理, 2009, 34(5):41-45. http://d.old.wanfangdata.com.cn/Periodical/jsrcl200905012CHEN Changjun, WANG Maocai, WANG Dongsheng, et al. Deposition of Al-Nd alloy on surface of AZ31 magnesium alloy by high-energy micro-arc alloying[J]. Heat Treatment of Metals, 2009, 34(5):41-45. http://d.old.wanfangdata.com.cn/Periodical/jsrcl200905012 [13] 陈长军, 王茂才, 刘一鸣, 等.AZ31上高能微弧火花合金化ZM5的研究[J].有色金属, 2008, 60(2):9-13. http://d.old.wanfangdata.com.cn/Periodical/ysjs200802003CHEN Changjun, WANG Maocai, LIU Yiming, et al. Study of high-energy micro-arc alloying ZM5 Mg alloy on AZ31 Mg alloy[J]. Nonferrous Metals, 2008, 60(2):9-13. http://d.old.wanfangdata.com.cn/Periodical/ysjs200802003 [14] 刘延辉.Ti6A14V钛合金表面激光熔覆镍基复合涂层及增强机理研究[D].上海: 华东理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10251-1015322686.htm [15] 藏辰峰.辊道辊用20钢表面激光熔覆耐磨损涂层研究[D].沈阳: 东北大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10145-1015562205.htm [16] GUO C, CHEN J M, ZHOU J S. Effects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating[J]. Surface & Coatings Technology, 2012, 206:2064-2071. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0225392939 [17] FERNÁNDEZ M R, GARCÍA A, CUETOS J A. Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC[J]. Wear, 2015, 324-325:80-89. doi: 10.1016/j.wear.2014.12.021 期刊类型引用(10)
1. 卢洋,李自胜,肖晓萍,赵海波. 工艺参数对空心药柱压制成型后回弹的影响. 爆破器材. 2025(01): 21-27 . 百度学术
2. 齐敏菊,高光发,冯家臣,周玄,武一丁. 分离式Hopkinson压杆试验波形校正与数据处理方法改进. 实验力学. 2025(01): 125-133 . 百度学术
3. 闫晓虹,徐传豪,李千兵,牛康,高磊,安崇伟,王晶禹. HMX基O/W型悬浮油墨的喷墨打印成型及性能. 含能材料. 2024(05): 492-500 . 百度学术
4. 康松逸,许杰,卢熹,王树山,贾曦雨. DNAN基含铝炸药低应变率下J-C本构关系. 水下无人系统学报. 2024(05): 923-930 . 百度学术
5. 黄垂艺,时岩,金朋刚,陈凯. PBX炸药损伤本构模型及其工程运用. 含能材料. 2022(03): 188-196 . 百度学术
6. 楼建锋,张树道. 加载速率和加载位置对炸药缝隙扩展过程影响的数值模拟. 含能材料. 2022(12): 1259-1265 . 百度学术
7. 张萌昭,屈可朋,沈飞,吴翰林,周涛. 炸药装药损伤行为数值模拟研究进展. 兵器装备工程学报. 2021(03): 8-14 . 百度学术
8. 雷经发,宣言,刘涛,姜锡权,段飞亚,魏展. 聚氯乙烯弹性体动态拉伸力学性能实验研究. 高压物理学报. 2021(03): 80-89 . 百度学术
9. 胡雪垚,聂贻韬,沈飞,肖玮,屈可朋. 考虑应变率及密度影响的含铝PBX炸药本构模型. 火炸药学报. 2021(05): 631-636 . 百度学术
10. 宋峻. 基于变形热的NEPE推进剂本构模型. 弹道学报. 2020(03): 25-29 . 百度学术
其他类型引用(3)
-