钢筋混凝土靶侵彻的可压缩弹-塑性动态空腔膨胀阻力模型

邓勇军 宋文杰 陈小伟 姚勇

邓勇军, 宋文杰, 陈小伟, 姚勇. 钢筋混凝土靶侵彻的可压缩弹-塑性动态空腔膨胀阻力模型[J]. 爆炸与冲击, 2018, 38(5): 1023-1030. doi: 10.11883/bzycj-2017-0043
引用本文: 邓勇军, 宋文杰, 陈小伟, 姚勇. 钢筋混凝土靶侵彻的可压缩弹-塑性动态空腔膨胀阻力模型[J]. 爆炸与冲击, 2018, 38(5): 1023-1030. doi: 10.11883/bzycj-2017-0043
DENG Yongjun, SONG Wenjie, CHEN Xiaowei, YAO Yong. A dynamic cavity-expansion penetration model of compressible elastic-plastic response for reinforced concrete targets[J]. Explosion And Shock Waves, 2018, 38(5): 1023-1030. doi: 10.11883/bzycj-2017-0043
Citation: DENG Yongjun, SONG Wenjie, CHEN Xiaowei, YAO Yong. A dynamic cavity-expansion penetration model of compressible elastic-plastic response for reinforced concrete targets[J]. Explosion And Shock Waves, 2018, 38(5): 1023-1030. doi: 10.11883/bzycj-2017-0043

钢筋混凝土靶侵彻的可压缩弹-塑性动态空腔膨胀阻力模型

doi: 10.11883/bzycj-2017-0043
基金项目: 

国家自然科学基金 11225213

国家自然科学基金 11390361

国家自然科学基金 11390362

详细信息
    作者简介:

    邓勇军(1987-), 男, 博士研究生

    通讯作者:

    陈小伟, xwchen@caep.cn

  • 中图分类号: O345

A dynamic cavity-expansion penetration model of compressible elastic-plastic response for reinforced concrete targets

  • 摘要: 在Forrestal素混凝土靶侵彻的可压缩弹-塑性球形动态空腔膨胀理论模型基础上,考虑粉碎区以内钢筋对混凝土的环向约束作用,提出了一个适用于刚性弹侵彻钢筋混凝土靶的阻力模型。论文通过体积配筋率的引入,获得了钢筋混凝土靶空腔表面径向应力的理论解,并讨论了配筋率对空腔壁面径向应力及各分区大小的影响。结果表明:钢筋对混凝土的环向约束效应影响了空腔膨胀过程中混凝土各区域的大小分布,并提高了空腔表面的径向应力。
  • 图  1  低速时混凝土空腔膨胀响应分区

    Figure  1.  Regions of concrete cavity at low expanding speed

    图  2  弹性-粉碎区模型

    Figure  2.  Model of elastic-crushed region

    图  3  钢筋混凝土靶示意图

    Figure  3.  Schematic of reinforced concrete target

    图  4  靶体钢筋布置

    Figure  4.  Steel distribution in target

    图  5  膨胀过程中钢筋变形示意图

    Figure  5.  Steel deformation while cavity expanding

    图  6  钢筋混凝土微元

    Figure  6.  Infinitesimal of reinforced concrete

    图  7  配筋率为零时钢筋混凝土空腔表面径向应力-侵彻速度关系

    Figure  7.  Relationship between radial stress at cavity surface and penetration speed at zero reinforcement ratio

    图  8  配筋率为零时钢筋混凝土塑性-弹性界面速度-侵彻速度关系

    Figure  8.  Speed of plastic-elastic interface vs. penetration speed at zero reinforcement ratio

    图  9  不同配筋率下粉碎区-弹性区界面速度-侵彻速度关系

    Figure  9.  Speed of plastic-elastic interface vs. penetration speed at different reinforcement ratios

    图  10  不同配筋率下径向应力-侵彻速度关系

    Figure  10.  Relationship between radial stress and penetration speed at different reinforcement ratios

    图  11  可压缩系数ABC与体积配筋率变化关系

    Figure  11.  Relationship between coefficients of A, B, C and reinforced ratios

  • [1] BISHOP R F, HILL R, MOTT N F. The theory of indentation and hardness tests[J]. Proceedings of the Physical Society, 1945, 57(57):147-159. http://cn.bing.com/academic/profile?id=42fa426552499af2730afd0f2326dcff&encoded=0&v=paper_preview&mkt=zh-cn
    [2] GOODIER J N. On the mechanics of indentation and cratering in the solid targets of strain-hardening metal by impact of hard and soft spheres[C]//Proceedings of the 7th Symposium on Hypervelocity Impact Ⅲ, 1965: 215-259.
    [3] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering, 2002, 27(6):619-637. doi: 10.1016/S0734-743X(02)00005-2
    [4] YANKELEVSKY D Z. Local response of concrete slabs to low velocity missile impact[J]. International Journal of Impact Engineering, 1997, 19(4):331-343. doi: 10.1016/S0734-743X(96)00041-3
    [5] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al.An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4):395-405. doi: 10.1016/0734-743X(94)80024-4
    [6] FORRESTAL M J, LUK V K. Penetration into soil targets[J]. International Journal of Impact Engineering, 1992, 12(3):427-444. doi: 10.1016/0734-743X(92)90167-R
    [7] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids & Strchture, 1997, 28(5):4127-4146. http://cn.bing.com/academic/profile?id=9f6cbc41cc8e41622e2eccbe35f1dfdd&encoded=0&v=paper_preview&mkt=zh-cn
    [8] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile[J]. International Journal of Impact Engineering, 2003, 28(1):93-116. doi: 10.1016/S0734-743X(02)00037-4
    [9] 周宁, 任辉启, 沈兆武, 等.侵彻钢筋混凝土过程中弹丸过载特性的实验研究[J].实验力学, 2006, 21(5):572-578. doi: 10.3969/j.issn.1001-4888.2006.05.005

    ZHOU Ning, REN Huiqi, SHEN Zhaowu, et al. Experimental study on overload characteristics of projectile penetrating reinforced concrete[J]. Journal of Experimental Mechanics, 2006, 21(5):572-578. doi: 10.3969/j.issn.1001-4888.2006.05.005
    [10] LUK V K, FORRESTAL M J. Penetration into semi-finite reinforced concrete targets with spherical and ogival nose projectiles[J]. International Journal of Impact Engineering, 1987, 6(4):291-301. doi: 10.1016/0734-743X(87)90096-0
    [11] KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects[J]. Nuclear Engineering & Design, 1976, 37(2):183-203. doi: 10.1016-0029-5493(76)90015-7/
    [12] SLITER G E. Assessment of empirical concrete impact formulas[J]. Journal of Structural Division, 1980, 106(5):1023-1045. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234878418
    [13] RIERA J D. Penetration, scabbing and perforation of concrete structure hit by solid missile[J]. Nuclear Engineering & Design, 1989, 115(1):121-131. http://cn.bing.com/academic/profile?id=33c858ea7b7830764e9470bb68f27f06&encoded=0&v=paper_preview&mkt=zh-cn
    [14] BARR P. Guidelines for the design and assessment of concrete structures subjected to impact[R]. London: HMSO, 1990.
    [15] DANCYGIER A N. Effect of reinforcement ratio on the resistance of reinforced concrete to hard projectile impact[J]. Nuclear Engineering & Design, 1997, 172(1):233-245. http://cn.bing.com/academic/profile?id=723b6881b18fa7ba33bf200ca91ae81f&encoded=0&v=paper_preview&mkt=zh-cn
    [16] CHEN X W, LI X L, CHEN Y Z, et al. Normal perforation of reinforced concrete target by rigid projectile[J]. International Journal of Impact Engineering, 2008, 35(14):1119-1129. http://cn.bing.com/academic/profile?id=c08e64272931d28d2d5412ef1635ac16&encoded=0&v=paper_preview&mkt=zh-cn
    [17] PRESS W H, FLANNERY B P, TEUKOLSKY S A, et al. Numerical recipes, the art of scientific computing[M]. New York:Cambridge University Press, 1989.
    [18] FORRESTAL M J, LUK V K. Dynamic spherical cavity expansion in a compressible elastic-plastic solid[J]. Journal of Applied Mechanics, 1988, 55(2):275-279. doi: 10.1115/1.3173672
    [19] HOPKINS H G. Dynamic expansion of spherical cavities in metals[M]//Sneddon I N, Hill R. Progress in Solid Mechanics. New York: North-Holland Publishing Company, 1960
  • 加载中
图(11)
计量
  • 文章访问数:  5113
  • HTML全文浏览量:  1315
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-15
  • 修回日期:  2017-03-31
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回