靶板在爆炸成型弹丸垂直侵彻下的层裂

李睿 黄正祥 祖旭东 肖强强 贾鑫

李睿, 黄正祥, 祖旭东, 肖强强, 贾鑫. 靶板在爆炸成型弹丸垂直侵彻下的层裂[J]. 爆炸与冲击, 2018, 38(5): 1039-1044. doi: 10.11883/bzycj-2017-0055
引用本文: 李睿, 黄正祥, 祖旭东, 肖强强, 贾鑫. 靶板在爆炸成型弹丸垂直侵彻下的层裂[J]. 爆炸与冲击, 2018, 38(5): 1039-1044. doi: 10.11883/bzycj-2017-0055
LI Rui, HUANG Zhengxiang, ZU Xudong, XIAO Qiangqiang, JIA Xin. Spallation of targets subjected to vertical penetraion of explosively-formed projectiles[J]. Explosion And Shock Waves, 2018, 38(5): 1039-1044. doi: 10.11883/bzycj-2017-0055
Citation: LI Rui, HUANG Zhengxiang, ZU Xudong, XIAO Qiangqiang, JIA Xin. Spallation of targets subjected to vertical penetraion of explosively-formed projectiles[J]. Explosion And Shock Waves, 2018, 38(5): 1039-1044. doi: 10.11883/bzycj-2017-0055

靶板在爆炸成型弹丸垂直侵彻下的层裂

doi: 10.11883/bzycj-2017-0055
基金项目: 

国家自然科学基金项目 11402122

详细信息
    作者简介:

    李睿(1993-), 男, 硕士研究生

    通讯作者:

    黄正祥, huangyu@mail.njust.edu.cn

  • 中图分类号: O383;O385

Spallation of targets subjected to vertical penetraion of explosively-formed projectiles

  • 摘要: 为了准确掌握靶板层裂过程和规律,基于波动力学和基本假设,建立了爆炸成型弹丸(explosively formed projectile,EFP)垂直侵彻有限厚靶板时层裂的力学模型,得到了层裂点的表达式。研究结果表明:EFP速度为1 800 m/s、靶板厚度从35 mm增大到60 mm时,靶板背面弯月形层裂区厚度不断增大,弯月形层裂区长度不断减小;靶板厚度保持40 mm不变、EFP速度从1 600 m/s增大到1 900 m/s时,靶板背面层裂区厚度不断减小,弯月形层裂区长度不断增大。开展了EFP侵彻40 mm厚装甲钢靶板的实验,将实验结果和理论计算结果进行对比分析,两者吻合较好。
  • 图  1  入射波和反射波相互作用示意图

    Figure  1.  Schematic diagram of interaction between incident and reflected waves

    图  2  不同EFP速度下靶板背面发生层裂的区域

    Figure  2.  Spallation zones at target backs at different EFP velocities

    图  3  不同厚度靶板背面发生层裂的区域

    Figure  3.  Spallation zones at target backswith different thicknesses

    图  4  成型装药

    Figure  4.  Photograph of shaped charge

    图  5  EFP药型罩

    Figure  5.  Diagram of EFP liner

    图  6  侵彻实验现场布置

    Figure  6.  Layout of penetration experiment

    图  7  实验与理论计算结果

    Figure  7.  Experimental and theoretical results

    表  1  层裂参数的实验结果和理论计算结果

    Table  1.   Experimental and theorical results of spallation parameters

    层裂厚度/mm 层裂长度/mm
    理论计算 实验1 实验2 理论计算 实验1 实验2
    8.8 8.4 9.1 114.0 110.8 116.1
    下载: 导出CSV
  • [1] RINEHART J S, PEARSON J. Conical surfaces of fracture produced by asymmetrical impulsive loading[J]. Journal of Applied Physics, 1952, 23(6):685-687. doi: 10.1063/1.1702279
    [2] RINEHART J S. Stress transients in solids[M]. Santa Fe, New Mexico:HyperDynamics, 1975:212-215.
    [3] REN Bo, LI Shaofan, QIAN Jing, et al. Meshfree simulations of spall fracture[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(5/6/7/8):797-811. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0224104199
    [4] YU V B, SAVELEVA N V, NAIMARK O B. Numerical simulation of dynamic failure and multi spall fracture in metals[J]. Journal of Physics:Conference Series, 2016, 774(1):012063. http://cn.bing.com/academic/profile?id=f83b063994a23613a1a8bcd0d00584f5&encoded=0&v=paper_preview&mkt=zh-cn
    [5] 杜忠华.动能弹侵彻陶瓷复合装甲机理[D].南京: 南京理工大学, 2002: 61-64. http://cdmd.cnki.com.cn/Article/CDMD-10288-2003104675.htm
    [6] 陈大年, 谭华, 俞宇颖, 等.一种基于空穴聚集的层裂模型[J].爆炸与冲击, 2006, 26(2):97-104. doi: 10.3321/j.issn:1001-1455.2006.02.001

    CHEN Danian, TAN Hua, YU Yuying, et al. A spallation model based on hole coalescence[J]. Explosion and Shock Waves, 2006, 26(2):97-104. doi: 10.3321/j.issn:1001-1455.2006.02.001
    [7] 刘飞, 唐献述, 任新见.接触爆炸作用下钢板层裂效应数值分析[J].工程爆破, 2011, 17(2):15-18. doi: 10.3969/j.issn.1006-7051.2011.02.004

    LIU Fei, TANG Xianshu, REN Xinjian. Numerical analysis of spall effect of steel plate under contact explosion[J]. Engineering Blasting, 2011, 17(2):15-18. doi: 10.3969/j.issn.1006-7051.2011.02.004
    [8] 魏波.冲击载荷下材料层裂的数值模拟[D].南京: 南京理工大学, 2013: 20-51. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2275664
    [9] 王礼立.应力波基础[M].北京:国防工业出版社, 2005:238-239.
    [10] ZU X, HUANG Z, XIAO Q, et al. Theoretical study on equivalent target of ceramic composite armor[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(4):576-582. doi: 10.1002/prep.v40.4
    [11] HELD M. Verification of the equation for radial crater growth by shaped charge jet penetration[J]. International Journal of Impact Engineering, 1995, 17(1/2/3):387-398. doi: 10.1016-0734-743X(95)99864-N/
    [12] NEUBERGER A, PELES S, RITTEL D. Scaling the response of circular plates subjected to large and close-range spherical explosions. Part Ⅰ:Air-blast loading[J]. International Journal of Impact Engineering, 2007, 34(5):859-873 doi: 10.1016/j.ijimpeng.2006.04.001
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  5051
  • HTML全文浏览量:  2076
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-22
  • 修回日期:  2017-06-07
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回