一个端部开口短管气体爆燃外场火焰传播模型

杜扬 齐圣 李国庆 王世茂 李阳超

杜扬, 齐圣, 李国庆, 王世茂, 李阳超. 一个端部开口短管气体爆燃外场火焰传播模型[J]. 爆炸与冲击, 2018, 38(5): 1057-1063. doi: 10.11883/bzycj-2017-0060
引用本文: 杜扬, 齐圣, 李国庆, 王世茂, 李阳超. 一个端部开口短管气体爆燃外场火焰传播模型[J]. 爆炸与冲击, 2018, 38(5): 1057-1063. doi: 10.11883/bzycj-2017-0060
DU Yang, QI Sheng, LI Guoqing, WANG Shimao, LI Yangchao. A model of gaseous deflagration flame propagation outside the open end of a short duct[J]. Explosion And Shock Waves, 2018, 38(5): 1057-1063. doi: 10.11883/bzycj-2017-0060
Citation: DU Yang, QI Sheng, LI Guoqing, WANG Shimao, LI Yangchao. A model of gaseous deflagration flame propagation outside the open end of a short duct[J]. Explosion And Shock Waves, 2018, 38(5): 1057-1063. doi: 10.11883/bzycj-2017-0060

一个端部开口短管气体爆燃外场火焰传播模型

doi: 10.11883/bzycj-2017-0060
基金项目: 

国家自然科学基金项目 51276195

重庆市研究生创新项目 CYB15127

详细信息
    作者简介:

    杜扬(1958-), 博士, 教授, 博士生导师

    通讯作者:

    齐圣, qscups@163.com

  • 中图分类号: O381

A model of gaseous deflagration flame propagation outside the open end of a short duct

  • 摘要: 针对端部开口短管气体爆燃火焰传播问题,通过借鉴Clanet等和Bychkov等提出的火焰传播模型,在假设绝热、不可压缩的条件下,得到了可燃气体分布与火焰锋面传播的数学模型。以汽油蒸气为实验工质,在全透明实验管道上进行了爆燃实验。通过高速摄影及纹影图像,对所提出的模型进行了验证。结果表明,该模型能够较准确地预测长径比4:1至10:1的端部开口短管气体爆燃外场可燃气体界面与火焰锋面位置。上述成果在可燃气防爆安全领域具有一定应用价值。
  • 图  1  实验系统示意图

    Figure  1.  Scheme of the experimental system

    图  2  爆燃火焰高速摄影与纹影图像

    Figure  2.  High-speed images of deflagration flame propagation

    图  3  爆燃火焰纹影图像

    Figure  3.  Schlieren photos of deflagration flame propagation

    图  4  指形火焰几何特征示意图[2]

    Figure  4.  Sketch of the finger-shaped flame[2]

    图  5  已燃区域与可燃气体分布示意图

    Figure  5.  Sketches and schlieren images of the burnt area and the flammable gas cloud

    图  6  火焰传播至外场阶段几何特征示意图

    Figure  6.  Sketch of the flame behavior during the outflow stage

    图  7  轴向火焰锋面与未燃气体界面计算结果与实验结果对比

    Figure  7.  Comparison of calculated and experimental results of the axial flame front and unburnt gas interface

    图  8  不同长径比下轴向火焰锋面位置计算结果与实验结果

    Figure  8.  Calculated and experimental results of the axial flame front and unburnt gas interface at different aspect ratios

  • [1] CLANET C, SEARBY G. On the "tulip flame" phenomenon[J]. Combustion and Flame, 1996, 105(1/2):225-238. doi: 10.1016-0010-2180(95)00195-6/
    [2] BYCHKOV V, AKKERMAN V, FRU G, et al. Flame acceleration in the early stages of burning in tubes[J]. Combustion and Flame, 2007, 150(4):263-276. doi: 10.1016/j.combustflame.2007.01.004
    [3] VALIEV D M, AKKERMAN V, KUZNETSOV M, et al. Influence of gas compression on flame acceleration in the early stage of burning in tubes[J]. Combustion and Flame, 2013, 160(1):97-111. doi: 10.1016/j.combustflame.2012.09.002
    [4] NITSCHE M, KRASNY R. A numerical study of vortex ring formation at the edge of a circular tube[J]. Journal of Fluid Mechanics, 1994, 276(1):139-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112094002508
    [5] DIDDEN N. On the formation of vortex rings:rolling-up and production of circulation[J]. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 1979, 30(1):101-116. doi: 10.1007/BF01597484
    [6] SHEN X, WANG Q, XIAO H, et al. Experimental study on the characteristic stages of premixed hydrogen-air flame propagation in a horizontal rectangular closed duct[J]. International Journal of Hydrogen Energy, 2012, 37(16):12028-12038. doi: 10.1016/j.ijhydene.2012.05.084
    [7] MARGOLIS G H. Nonsteady flame propagation[J]. Combustion Science and Technology, 1980, 22:143-169. doi: 10.1080/00102208008952379
    [8] MARKSTEIN G H. A shock-tube study of flame front-pressure wave interaction[C]//Symposium (International) on Combustion. Elsevier Inc., 1957, 6(1): 387-398. http://www.sciencedirect.com/science/article/pii/S008207845780054X
    [9] KERAMPRAN S, DESBORDES D, VEYSSIERE B. Study of the mechanisms of flame acceleration in a tube of constant cross section[J]. Combustion Science and Technology, 2000, 158(1):71-91. doi: 10.1080/00102200008947328
    [10] XIAO H, MAKAROV D, SUN J, et al. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct[J]. Combustion and Flame, 2012, 159(4):1523-1538. doi: 10.1016/j.combustflame.2011.12.003
    [11] XIAO H, SUN J, CHEN P. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber[J]. Journal of Hazardous Materials, 2014, 268(3):132-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232475592
    [12] PONIZY B, CLAVERIE A, VEYSSIÉRE B. Tulip flame-the mechanism of flame front inversion[J]. Combustion and Flame, 2014, 161(12):3051-3062. doi: 10.1016/j.combustflame.2014.06.001
    [13] HUANG Y, SUNG C J, ENG J A. Laminar flame speeds of primary reference fuels and reformer gas mixtures[J]. Combustion and Flame, 2004, 139(3):239-251. doi: 10.1016/j.combustflame.2004.08.011
    [14] TURNS S R. An introduction to combustion:concepts and applications[M]. McGraw-Hill Education, 1961:543.
    [15] LAW C K. Combustion physics[M]. Cambridge University Press, 2010.
  • 加载中
图(8)
计量
  • 文章访问数:  5616
  • HTML全文浏览量:  2062
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-22
  • 修回日期:  2017-05-17
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回