A model of gaseous deflagration flame propagation outside the open end of a short duct
-
摘要: 针对端部开口短管气体爆燃火焰传播问题,通过借鉴Clanet等和Bychkov等提出的火焰传播模型,在假设绝热、不可压缩的条件下,得到了可燃气体分布与火焰锋面传播的数学模型。以汽油蒸气为实验工质,在全透明实验管道上进行了爆燃实验。通过高速摄影及纹影图像,对所提出的模型进行了验证。结果表明,该模型能够较准确地预测长径比4:1至10:1的端部开口短管气体爆燃外场可燃气体界面与火焰锋面位置。上述成果在可燃气防爆安全领域具有一定应用价值。Abstract: Aiming at the flame propagation problem of gas deflagration in a short tube with one end closed and the other end open, by referring to the flame propagation model proposed by Clanet, et al and Bychkov, et al, and under the condition of adiabatic and incompressible assumption, a mathematical model of flammable gas distribution and flame front propagation was obtained. By using gasoline vapor as experimental working substance, deflagration experiment was carried out based on a fully transparent experimental pipeline. The proposed model was validated by high-speed photography and schlieren images. Results show that under the condition of length-diameter ratios 4:1 to 10:1, this model can predict accurately the flammable gas interface position and flame front position in the flow field outside the open end. Above results extend the original theory to outside field calculation, and have certain application value in flammable gas explosion protection and safety design.
-
Key words:
- gasoline vapor /
- deflagration /
- flame front /
- duct with an open end
-
-
[1] CLANET C, SEARBY G. On the "tulip flame" phenomenon[J]. Combustion and Flame, 1996, 105(1/2):225-238. doi: 10.1016-0010-2180(95)00195-6/ [2] BYCHKOV V, AKKERMAN V, FRU G, et al. Flame acceleration in the early stages of burning in tubes[J]. Combustion and Flame, 2007, 150(4):263-276. doi: 10.1016/j.combustflame.2007.01.004 [3] VALIEV D M, AKKERMAN V, KUZNETSOV M, et al. Influence of gas compression on flame acceleration in the early stage of burning in tubes[J]. Combustion and Flame, 2013, 160(1):97-111. doi: 10.1016/j.combustflame.2012.09.002 [4] NITSCHE M, KRASNY R. A numerical study of vortex ring formation at the edge of a circular tube[J]. Journal of Fluid Mechanics, 1994, 276(1):139-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112094002508 [5] DIDDEN N. On the formation of vortex rings:rolling-up and production of circulation[J]. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 1979, 30(1):101-116. doi: 10.1007/BF01597484 [6] SHEN X, WANG Q, XIAO H, et al. Experimental study on the characteristic stages of premixed hydrogen-air flame propagation in a horizontal rectangular closed duct[J]. International Journal of Hydrogen Energy, 2012, 37(16):12028-12038. doi: 10.1016/j.ijhydene.2012.05.084 [7] MARGOLIS G H. Nonsteady flame propagation[J]. Combustion Science and Technology, 1980, 22:143-169. doi: 10.1080/00102208008952379 [8] MARKSTEIN G H. A shock-tube study of flame front-pressure wave interaction[C]//Symposium (International) on Combustion. Elsevier Inc., 1957, 6(1): 387-398. http://www.sciencedirect.com/science/article/pii/S008207845780054X [9] KERAMPRAN S, DESBORDES D, VEYSSIERE B. Study of the mechanisms of flame acceleration in a tube of constant cross section[J]. Combustion Science and Technology, 2000, 158(1):71-91. doi: 10.1080/00102200008947328 [10] XIAO H, MAKAROV D, SUN J, et al. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct[J]. Combustion and Flame, 2012, 159(4):1523-1538. doi: 10.1016/j.combustflame.2011.12.003 [11] XIAO H, SUN J, CHEN P. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber[J]. Journal of Hazardous Materials, 2014, 268(3):132-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232475592 [12] PONIZY B, CLAVERIE A, VEYSSIÉRE B. Tulip flame-the mechanism of flame front inversion[J]. Combustion and Flame, 2014, 161(12):3051-3062. doi: 10.1016/j.combustflame.2014.06.001 [13] HUANG Y, SUNG C J, ENG J A. Laminar flame speeds of primary reference fuels and reformer gas mixtures[J]. Combustion and Flame, 2004, 139(3):239-251. doi: 10.1016/j.combustflame.2004.08.011 [14] TURNS S R. An introduction to combustion:concepts and applications[M]. McGraw-Hill Education, 1961:543. [15] LAW C K. Combustion physics[M]. Cambridge University Press, 2010. 期刊类型引用(19)
1. 李营,杜志鹏,陈赶超,王诗平,侯海量,李晓彬,张攀,张伦平,孔祥韶,李海涛,郭君,姚术健,王志凯,殷彩玉. 舰艇爆炸毁伤与防护若干关键问题研究进展. 中国舰船研究. 2024(03): 3-60 . 百度学术
2. 院素静,杨凯,刘泽瑞,宗周红. 近距离爆炸作用下RC桥墩毁伤模式及其轴力效应数值模拟. 东南大学学报(自然科学版). 2023(01): 76-85 . 百度学术
3. 武海军,成乐乐,陈文戈,黄风雷,田思晨,于超,吴子奇. 典型舰船结构的水下爆炸耦合毁伤研究进展. 北京理工大学学报. 2023(05): 439-459 . 百度学术
4. 高涵,宋振伟,孔祥韶,周沪,郑成,吴卫国. 加筋板结构参数对其抗水下爆炸能力的影响分析. 中国舰船研究. 2023(05): 180-193 . 百度学术
5. 黄鑫华,李应刚,张永峰,李晓彬. 多次水下爆炸下背空加筋板损伤累积特性研究. 舰船科学技术. 2023(19): 9-16 . 百度学术
6. 程帅,刘文祥,童念雪,殷文骏,师莹菊,张德志. 爆炸载荷下飞机典型加筋结构毁伤特性. 爆炸与冲击. 2021(01): 88-95 . 本站查看
7. 张舵,姚术健,黄河,胡献磊,刘双全,卢芳云. 箱型结构内部爆炸破坏研究进展. 爆炸与冲击. 2021(07): 18-32 . 本站查看
8. 顾鑫,章青. 爆炸荷载作用下大坝破坏分析的数值模拟研究进展. 河海大学学报(自然科学版). 2017(01): 45-55 . 百度学术
9. 金键,朱锡,侯海量,陈鹏宇,吴林杰. 水下爆炸载荷下舰船响应与毁伤研究综述. 水下无人系统学报. 2017(06): 396-409 . 百度学术
10. 陈新祥,刘彦. 爆炸冲击载荷作用下靶板动态响应研究. 兵工学报. 2016(S2): 149-153 . 百度学术
11. 王龙侃,张之凡,郎济才,姚熊亮. 基于LS-DGF-DG方法的船体板架结构近场水下爆炸毁伤特性研究. 振动与冲击. 2016(16): 64-71 . 百度学术
12. 王树乐,陈高杰,沈晓乐,贾则. 基于并行计算的某战斗部中近场毁伤能力仿真研究. 兵工学报. 2015(S1): 298-302 . 百度学术
13. 杨棣,姚熊亮,张玮,祝祥刚. 水下近场及接触爆炸作用下双层底结构损伤试验研究. 振动与冲击. 2015(02): 161-165+186 . 百度学术
14. 杨棣,姚熊亮,王军,王伟,赵蛟龙. 接触爆炸载荷作用下船体板架破口大小的预测. 中国造船. 2014(02): 77-84 . 百度学术
15. 吴林杰,朱锡,侯海量,陈长海. 空中近距爆炸下加筋板架的毁伤模式仿真研究. 振动与冲击. 2013(14): 77-81+126 . 百度学术
16. 高福银,龙源,纪冲,路亮. 侧向爆炸荷载下金属圆柱壳动力屈曲模态的实验研究. 振动与冲击. 2013(24): 117-121 . 百度学术
17. 吕小师,王光勇,苗子伟. 被卡钻杆的环向聚能弹爆破切割技术及应用. 辽宁工程技术大学学报(自然科学版). 2012(01): 73-76 . 百度学术
18. 岳永威,王超,方超,程晓达. 军用双体船抗冲击特性数值研究. 中国舰船研究. 2012(01): 29-34 . 百度学术
19. 岳永威,王超,朱枫,王奂钧. 单壳体潜艇在气泡脉动载荷作用下的响应规律研究. 中国舰船研究. 2012(02): 42-49 . 百度学术
其他类型引用(29)
-