SHPB加载下PTFE/Al冲击反应的临界条件

乌布力艾散·麦麦提图尔荪 葛超 田超 董永香

乌布力艾散·麦麦提图尔荪, 葛超, 田超, 董永香. SHPB加载下PTFE/Al冲击反应的临界条件[J]. 爆炸与冲击, 2018, 38(5): 957-965. doi: 10.11883/bzycj-2017-0075
引用本文: 乌布力艾散·麦麦提图尔荪, 葛超, 田超, 董永香. SHPB加载下PTFE/Al冲击反应的临界条件[J]. 爆炸与冲击, 2018, 38(5): 957-965. doi: 10.11883/bzycj-2017-0075
Wubuliaisan MAIMAITITUERSUN, GE Chao, TIAN Chao, DONG Yongxiang. Impact-induced initiation criteria of PTFE/Al by split Hopkinson pressure bar[J]. Explosion And Shock Waves, 2018, 38(5): 957-965. doi: 10.11883/bzycj-2017-0075
Citation: Wubuliaisan MAIMAITITUERSUN, GE Chao, TIAN Chao, DONG Yongxiang. Impact-induced initiation criteria of PTFE/Al by split Hopkinson pressure bar[J]. Explosion And Shock Waves, 2018, 38(5): 957-965. doi: 10.11883/bzycj-2017-0075

SHPB加载下PTFE/Al冲击反应的临界条件

doi: 10.11883/bzycj-2017-0075
基金项目: 

国家自然科学基金项目 11202028

国家自然科学基金项目 11472053

详细信息
    作者简介:

    乌布力艾散·麦麦提图尔荪(1991-), 男, 硕士研究生

    通讯作者:

    董永香, dongyongx@bit.edu.cn

  • 中图分类号: O383.3;TJ04

Impact-induced initiation criteria of PTFE/Al by split Hopkinson pressure bar

  • 摘要: 采用分离式霍普金森压杆(SHPB)加载方法和高速摄影技术,对混合压制烧结法制备的铝颗粒增强聚四氟乙烯复合材料(polytetrafluoroethylene/Al,PTFE/Al)的冲击反应临界条件进行研究。实验中采用钢杆、铝杆和不同尺寸的试样,进行不同加载条件下的测试,实验结果表明:PTFE/Al复合材料的冲击反应过程主要可分为变形、碎裂、反应阶段,其冲击反应临界同时关联于应力和应变率。并基于实验获得了PTFE/Al复合材料的冲击反应临界渐进线应力和应变率,通过对实验数据的归纳和分析,初步提出实验条件下关联应力和应变率的PTFE/Al临界反应关系式,获得冲击反应阈值预测曲线。
  • 图  1  SHPB冲击加载实验装置示意图

    Figure  1.  Schematic of SHPB impact loading setup

    图  2  PTFE/Al真实应力应变曲线

    Figure  2.  True stress-strain curves of PTFE/Al

    图  3  SHPB加载下试样动态响应过程

    Figure  3.  Dynamic response of the sample under SHPB impact

    图  4  SHPB测试部分示意图

    Figure  4.  Testing section of SHPB

    图  5  钢杆测试系统冲击下的实验波形

    Figure  5.  Experimental waveforms under the impact of a steel bar test system

    图  6  PTFE/Al试样在钢杆冲击加载下的动态响应过程

    Figure  6.  Dynamic response process of PTFE/Al sample under impact loading by steel bar

    图  7  PTFE/Al试样在铝杆冲击加载下的动态响应过程

    Figure  7.  Dynamic response process of PTFE/Al sample under impact loading by aluminum bar

    图  8  PTFE/Al试样在钢杆冲击加载下的动态响应过程

    Figure  8.  Dynamic response process of PTFE/Al sample under impact loading by steel bar

    图  9  冲击应力和应变率关系

    Figure  9.  Relation between impact stress and strain rate

    图  10  压缩过程中PTFE/Al细观结构应力分布

    Figure  10.  Stress distribution of PTFE/Al under compression at microscale

    图  11  PTFE/Al在SHPB加载下反应预测曲线的拟合

    Figure  11.  Curves fitting for predicting the impact initiation of PTFE/Al samples by SHPB

    表  1  SHPB冲击加载实验结果

    Table  1.   Experimental results of SHPB impact loading

    编号 压杆材质 应变率/s-1 应力/MPa 反应
    1 9400 202
    2 9300 620
    3 7200 553
    4 7400 444
    5 4950 554
    6 5000 187
    下载: 导出CSV

    表  2  SHPB冲击加载实验参数

    Table  2.   Parameters for SHPB impact loading experiment

    图号 压杆材质 试样尺寸 冲击速度/(m·s-1) 应变率/s-1 应力/MPa 脉冲宽度/μs 反应
    6 $\emptyset $6 mm×4 mm 28 6840 535 120
    7 $\emptyset $6 mm×3 mm 31 9400 202 120
    8 $\emptyset $8 mm×8 mm 43 5150 576 120
    下载: 导出CSV
  • [1] JOSHI V S. Process for making polytetrafluoroethylene-aluminium composite andproduct made: US6547993B1[P]. 2003.
    [2] 乔良, 涂建, 赵利军, 等.A1/W/PTFE粒径级配关系对材料强度影响的实验研究[J].兵器材料科学与工程, 2014, 37(6):17-21. doi: 10.3969/j.issn.1004-244X.2014.06.005

    QIAO Liang, TU Jian, ZHAO Lijun, et al. Influence of particle sizegrading on strength of A1/W/PTFE composite[J]. Ordnance Material Science and Engineering, 2014, 37(6):17-21. doi: 10.3969/j.issn.1004-244X.2014.06.005
    [3] 阳世清, 徐松林, 张彤.PTFE/Al反应材料制备工艺及性能[J].国防科技大学学报, 2008, 30(6):40-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb200806009

    YANG Shiqing, XU Songlin, ZHANG Tong. Preparation and performance of PTEF/Al reactive materials[J]. Journal of National University of Defense Technology, 2008, 30(6):40-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb200806009
    [4] 赵鹏铎, 卢芳云, 李俊玲, 等.活性材料PTFE/Al动态压缩性能[J].含能材料, 2009, 17(4):459-462. doi: 10.3969/j.issn.1006-9941.2009.04.020

    ZHAO Pengduo, LU Fangyun, LI Junling, et al. The dynamic compressive properties of Al/PTFE reactive materials[J]. Chinese Journal of Energetic Materials, 2009, 17(4):459-462. doi: 10.3969/j.issn.1006-9941.2009.04.020
    [5] 徐松林.Al/PTFE含能反应材料力学性能研究[D].长沙: 国防科技大学, 2010.

    XU Songlin. Study on the mechanical performance of Polytetrafluorethylene/Al energetic reactive materials[D]. Changsha: National University of Defense Technology, 2010.
    [6] 王海福, 刘宗伟, 俞为民, 等.活性破片能量输出特性试验研究[J].北京理工大学学报, 2009, 29(8):663-666. http://lib.cqvip.com/qk/81668X/200001/31768611.html

    WANG Haifu, LIU Zongwei, YU Weimin, et al. Experimental investigation of energy release characteristics of reactive fragments[J]. Transactions of Beijing Institute of Technology, 2009, 29(8):663-666. http://lib.cqvip.com/qk/81668X/200001/31768611.html
    [7] ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials[J]. Journal of Applied Physics, 2013, 113(8):083508. doi: 10.1063/1.4793281
    [8] 帅俊峰, 蒋建伟, 王树有, 等.复合反应破片对钢靶侵彻的实验研究[J].含能材料, 2009, 17(6):722-725. doi: 10.3969/j.issn.1006-9941.2009.06.019

    SHUAI Junfeng, JIANG Jianwei, WANG Shuyou, et al. Compound reactive fragment penetrating steel target[J]. Chinese Journal of Energetic Materials, 2009, 17(6):722-725. doi: 10.3969/j.issn.1006-9941.2009.06.019
    [9] 谢长友, 蒋建伟, 帅俊峰, 等.复合反应破片对柴油油箱的毁伤效应实验研究[J].高压物理学报, 2009, 23(6):447-452. doi: 10.3969/j.issn.1000-5773.2009.06.008

    XIE Changyou, JIANG Jianwei, SHUAI Junfeng, et al. Experimental study on the damage effect of compound reactive fragment penetrating diesel oil tank[J]. Chinese Journal of High Pressure Physics, 2009, 23(6):447-452. doi: 10.3969/j.issn.1000-5773.2009.06.008
    [10] 辛春亮, 史文卿, 张雷雷, 等.活性药型罩聚能装药子弹对钢锭的毁伤效应研究[C]//第6届含能材料与钝感弹药技术学术研讨会论文集.成都, 2014.
    [11] GE C, DONG Y X, MAIMAITITUERSUN W. Microscale simulation on mechanical properties of Al/PTFE composite based on real microstructures[J]. Materials, 2016, 9(7):590.DOI: 10.3390/ma9070590.
    [12] 乌布力艾散·麦麦提图尔荪, 葛超, 董永香, 等.基于Al/PTFE真实细观特性统计模型的宏观力学性能模拟[J].复合材料学报, 2016, 33(11):9-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhclxb201611016

    MAIMAITITUERSUN Wubuliaisan, GE Chao, DONG Yongxiang, et al. Simulation on mechanical properties of Al/PTFE based on mesoscopic statistical model[J]. Acta Materiae Compositae Sinica, 2016, 33(11):9-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhclxb201611016
    [13] AMES R G. Vented chamber calorimetry for impact-initiated energetic materials[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2005.
    [14] LEE R J, JR W M, CARNEY J R, et al. Reactive materials studies[C]//Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP Publishing, 2006: 169-174.
    [15] FENG B, FANG X, LI Y C, et al. An initiation phenomenon ofAl/PTFE under quasi-static compression[J]. Chemical Physics Letters, 2015, 637:38-41. doi: 10.1016/j.cplett.2015.07.056
    [16] HUNT E M, MALCOLM S, PANTOYA M L, et al. Impact ignition of nano and micron composite energetic materials[J]. International Journal of Impact Engineering, 2009, 36(6):842-846. doi: 10.1016/j.ijimpeng.2008.11.011
    [17] MOCK W, DROTAR J T. Effect of aluminum particle size on the impact initiation of pressed ptfe/Al composite rods[C]//Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. American Institute of Physics, 2007: 971-974.
    [18] 任会兰, 李尉, 刘晓俊, 等.钨颗粒增强铝/聚四氟乙烯材料的冲击反应特性[J].兵工学报, 2016, 37(5):872-878. doi: 10.3969/j.issn.1000-1093.2016.05.014

    REN Huilan, LI Wei, LIU Xiaojun, et al. Reaction behaviors of AI/PTFE materials enhanced by W particles[J]. Acta Armamentarii, 2016, 37(5):872-878. doi: 10.3969/j.issn.1000-1093.2016.05.014
    [19] WANG L, LIU J X, LI S K, et al. Investigation on reaction energy, mechanical behavior and impact insensitivity of W-PTFE-Al composites with different W percentage[J]. Material and Design, 2016, 92:397-404. doi: 10.1016/j.matdes.2015.12.045
    [20] 徐松林, 阳世清, 赵鹏铎, 等.PTFE/Al含能复合材料的压缩力学行为研究[J].力学学报, 2009, 41(5):708-712. doi: 10.3321/j.issn:0459-1879.2009.05.013

    XU Songlin, YANG Shiqing, ZHAO Pengduo, et al. The study on the compressive behavior of Al/PTFE energetic composite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5):708-712. doi: 10.3321/j.issn:0459-1879.2009.05.013
    [21] GE C, DONG Y X, MAIMAITITUERSUN W, et al. Experimental study on impact-induced initiation thresholds of polytetrafluoroethylene/aluminum composite[J]. Propellants Explosives Pyrotechnics, 2017, 42:514-522. DOI: 10.1002/prep.201600216.
    [22] CHEN W, SONG B. Split Hopkinson (Kolsky) bar:Design testing and application[M]. New York:Spring, 2011.
    [23] YAVUZ H, TUFEKCI K, KAYACAN R, et al. Predicting the dynamic compressive strength of carbonate rocks from quasi-static properties[J]. Experimental Mechanics, 2013, 53(3):367-376. doi: 10.1007/s11340-012-9648-7
    [24] Herbold E B, Nesterenko V F, Benson D J, et al. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials[J]. Journal of Applied Physics, 2008, 104(10):103903. DOI: 10.1063/1.3000631.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  5767
  • HTML全文浏览量:  2008
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-14
  • 修回日期:  2017-07-12
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回