靶板厚度对卵形弹丸垂直贯穿中等厚度混凝土靶的影响

刘志林 王晓鸣 李文彬 姚文进 宋梅利

刘志林, 王晓鸣, 李文彬, 姚文进, 宋梅利. 靶板厚度对卵形弹丸垂直贯穿中等厚度混凝土靶的影响[J]. 爆炸与冲击, 2018, 38(5): 1083-1090. doi: 10.11883/bzycj-2017-0078
引用本文: 刘志林, 王晓鸣, 李文彬, 姚文进, 宋梅利. 靶板厚度对卵形弹丸垂直贯穿中等厚度混凝土靶的影响[J]. 爆炸与冲击, 2018, 38(5): 1083-1090. doi: 10.11883/bzycj-2017-0078
LIU Zhilin, WANG Xiaoming, LI Wenbin, YAO Wenjin, SONG Meili. Numerical and experimental study of an ogival projectile vertical perforating a medium thickness concrete target[J]. Explosion And Shock Waves, 2018, 38(5): 1083-1090. doi: 10.11883/bzycj-2017-0078
Citation: LIU Zhilin, WANG Xiaoming, LI Wenbin, YAO Wenjin, SONG Meili. Numerical and experimental study of an ogival projectile vertical perforating a medium thickness concrete target[J]. Explosion And Shock Waves, 2018, 38(5): 1083-1090. doi: 10.11883/bzycj-2017-0078

靶板厚度对卵形弹丸垂直贯穿中等厚度混凝土靶的影响

doi: 10.11883/bzycj-2017-0078
基金项目: 

国家自然科学基金项目 51278250

详细信息
    作者简介:

    刘志林(1988-), 男, 博士研究生, liuzhilin1017@163.com

  • 中图分类号: O385

Numerical and experimental study of an ogival projectile vertical perforating a medium thickness concrete target

  • 摘要: 为研究卵形弹丸贯穿中等厚度混凝土靶体的贯穿规律,开展直径60 mm尖卵形弹丸贯穿不同厚度混凝土靶体的侵彻实验,获得了不同撞击速度的弹丸贯穿不同厚度混凝土靶体的剩余速度规律。结合无网格SPH方法、RHT混凝土本构以及状态方程,对贯穿实验进行数值模拟,对不同工况下的弹丸过载规律以及靶体的损伤过程的分析发现:弹丸贯穿中等厚度混凝土靶体的贯穿过程分为开坑阶段、隧道稳定侵彻阶段以及靶背影响出靶阶段,在相同初始撞击速度下的靶背影响区的厚度随着靶体厚度的增加而增大。实验结果与数值模拟结果对比,表明模型能够有效模拟弹丸贯穿混凝介质问题,研究结果可为贯穿机理的研究提供参考。
  • 图  1  实验场地布置图

    Figure  1.  Layout of experimental site

    图  2  弹体装配实物

    Figure  2.  Photograph of assembled projectile

    图  3  1号工况下靶体破坏图

    Figure  3.  Failure of concrete target after impact under case 1

    图  4  3号工况下靶体破坏图

    Figure  4.  Failure of concrete target after impact under case 3

    图  5  侵彻模型

    Figure  5.  Penetration model

    图  6  弹体网格划分

    Figure  6.  Mesh division of projectile calculation model

    图  7  靶被贯穿过程损伤云图

    Figure  7.  Damage contour of target during penetration process

    图  8  靶被贯穿破坏的数值模拟结果

    Figure  8.  Simulation results of concrete target damage

    图  9  靶被贯穿破坏的实验结果

    Figure  9.  Experimental results of concrete target damage

    图  10  弹丸速度时程曲线

    Figure  10.  Velocity-time curve of projectile

    图  11  弹丸过载时程曲线

    Figure  11.  Acceleration-time curve of projectile

    图  12  弹丸过载与位移关系

    Figure  12.  Relation between acceleration and displacement

    图  13  3个分界时刻的损伤云图

    Figure  13.  Damage contour of different stages in penetration process at three instants of time

    表  1  实验结果

    Table  1.   Experimental results

    实验编号 H/m H/D m/kg vi/(m·s-1) vr/(m·s-1)
    1 0.6 10.0 4.152 639.6 308.0
    2 0.8 13.3 4.153 650.2 203.8
    3 1.0 16.7 4.152 643.0 0
    4 1.4 23.3 4.134 1 077.8 534.7
    5 1.6 26.7 4.157 1 070.0 471.0
    6 1.8 30.0 4.133 1 047.0 349.5
    下载: 导出CSV

    表  2  靶背影响区弹丸消耗的能量情况

    Table  2.   Energy consumption of projectile in rear free surface effectzone

    实验编号 H/D 进入靶背影响区的速度/(m·s-1) 弹丸消耗的能量/J
    1 10.0 460 1.4×105
    2 13.3 434 2.8×105
    3 16.7 428 3.8×105
    4 23.3 630 2.0×105
    5 26.7 541 2.2×105
    6 30.0 502 3.2×105
    下载: 导出CSV

    表  3  侵彻过程中3个阶段厚度的数值模拟结果

    Table  3.   Simulation results of thickness of three stages in penetration process

    实验 H/D 开坑区/D 隧道区/D 靶背影响区/D
    1 10.0 2.0 4.9 3.1
    2 13.3 2.0 5.7 5.6
    3 16.7 2.0 6.0 8.7
    4 23.3 2.0 18.1 3.2
    5 26.7 2.0 20.9 3.8
    6 30.0 2.0 21.9 6.1
    下载: 导出CSV
  • [1] 文鹤鸣.混凝土靶板冲击响应的经验公式[J].爆炸与冲击, 2003, 23(3):267-274. doi: 10.3321/j.issn:1001-1455.2003.03.014

    WEN Heming. Empirical equations for the impact response of concrete targets[J]. Explosion and Shock Waves, 2003, 23(3):267-274. doi: 10.3321/j.issn:1001-1455.2003.03.014
    [2] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths[J]. International Journal of Impact Engineering, 1992, 12(12):1-7. http://cn.bing.com/academic/profile?id=9f03befe241a1ac9be6d5957563e031a&encoded=0&v=paper_preview&mkt=zh-cn
    [3] YANKELEVSKY D Z. Local response of concrete slabs to low velocity missile impact[J]. International Journal of Impact Engineering, 1997, 19(4):331-343. doi: 10.1016/S0734-743X(96)00041-3
    [4] DANCYGIER A N. Rear face damage of normal and high-strength concrete elements caused by hard projectile impact[J]. Aci Structural Journal, 1998, 95(3):291-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ025002989
    [5] 葛涛, 刘保荣, 王明洋.弹体侵彻与贯穿有限厚度混凝土靶体的力学特性[J].爆炸与冲击, 2010, 30(2):159-163. http://www.bzycj.cn/CN/abstract/abstract8380.shtml

    GE Tao, LIU Baorong, WANG Mingyang. Penetration and perforation of concrete targets with finite thickness by projectiles[J]. Explosion and Shock Waves, 2010, 30(2):159-163. http://www.bzycj.cn/CN/abstract/abstract8380.shtml
    [6] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics, 2011, 78(5):051003. doi: 10.1115/1.4004326
    [7] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[R]. 1999.
    [8] 张若棋, 丁育青, 汤文辉, 等.混凝土HJC、RHT本构模型的失效强度参数[J].高压物理学报, 2011, 25(1):15-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7151809

    ZHANG Ruoqi, DING Yuqing, TANG Wenhui, et al. The failure strength parameters of HJC and RHT concrete constitutive models[J]. Chinese Journal of High Pressure Physics, 2011, 25(1):15-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7151809
    [9] 林华令, 丁育青, 汤文辉.混凝土侵彻数值模拟的影响因素[J].爆炸与冲击, 2013, 33(4):425-429. doi: 10.3969/j.issn.1001-1455.2013.04.015

    LIN Hualing, DING Yuqing, TANG Wenhui. Factors influencing numerical simulation of concrete penetration[J]. Explosion and Shock Waves, 2013, 33(4):425-429. doi: 10.3969/j.issn.1001-1455.2013.04.015
    [10] LEPPÄNEN J. Concrete subjected to projectile and fragment impacts:Modelling of crack softening and strain rate dependency in tension[J]. International Journal of Impact Engineering, 2006, 32(11):1828-1841. doi: 10.1016/j.ijimpeng.2005.06.005
    [11] ROSENBERG Z, DEKEL E. The deep penetration of concrete targets by rigid rods-revisited[J]. International Journal of Protective Structures, 2010, 1(1):125-144. doi: 10.1260/2041-4196.1.1.125
    [12] CHEN Xiaowei, LI Jicheng. Analysis on the resistive force in penetration of a rigid projectile[J]. Defence Technology, 2014, 10(3):285-293. doi: 10.1016/j.dt.2014.06.007
    [13] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1992, 15(4):395-405. http://cn.bing.com/academic/profile?id=1564dbbac134b4b6b0dbf13003ad9c56&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  5389
  • HTML全文浏览量:  1806
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-13
  • 修回日期:  2017-07-08
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回