Damage modes and failure mechanism of concrete dome of LNG storage tank
-
摘要: 为获得大型全容式LNG储罐混凝土穹顶结构在圆柱形刚体冲击作用下的动力响应、失效模式以及失效机理,基于160 000 m3的LNG储罐,应用ANSYS/LS-DYNA建立LNG储罐精细化有限元数值模型,并通过对弹丸冲击混凝土靶板实验的数值模拟,验证了有限元模拟方法及材料模型的适用性。通过分析圆柱体冲击物撞击下LNG储罐的动力响应,提出储罐穹顶结构的3种失效模式即局部凹陷、混凝土剥落、击穿破坏,并根据冲击过程中能量的传递特征揭示了每类失效模式对应的失效机理。最后通过大量参数分析获得不同冲击物直径、冲击位置、冲击角度对LNG储罐结构的最大冲击响应及失效模式的影响规律。结果表明,冲击角度、冲击物直径对LNG储罐混凝土外罐穹顶的失效模式影响较大,冲击位置对储罐穹顶失效模式的影响较小,可以忽略。Abstract: In order to investigate the damage modes and failure mechanism of the concrete dome of the liquefied natural gas (LNG) storage tank subjected to impact by a rigid circular cylinder, the finite element (FE) model of the outer concrete tank of the 160 000 m3 LNG storage tank for an actual LNG project and a cylindrical impactor is established based on ANSYS/LS-DYNAFE analysis software platform. The accuracy of the numerical simulation method and the material model employed has been verified by simulating the impact perforation of reinforced concrete slabs subjected to projectile with high speed. The dynamic response of structures under impacting with variable speed, angle, location, and diameter are studied. Based on the dynamic response of the outer concrete tank of the LNG storage tank subjected to impact loading, three damage modes are defined and the failure mechanism of each mode is revealed from the point view of energy. The response characteristics and rules with the change of the impact parameters are obtained. The results show that the impact angle and the diameter of the impactor affect significantly on the failure modes of dome, and the impact position at the dome has a negligible effect on the failure modes.
-
Key words:
- LNG storage tank /
- concrete dome /
- damage mode /
- failure mechanism
-
1. 冲击模拟方法验证
2. LNG储罐工程概况及有限元模型
3. LNG储罐外罐穹顶结构失效模式
4. LNG储罐外罐穹顶结构失效规律
4.1 冲击角度对失效模式的影响
4.2 冲击物尺寸对失效模式的影响
4.3 冲击位置对失效模式的影响
5. 冲击失效机理
5.1 局部凹陷失效机理
5.2 混凝土剥落与击穿破坏失效机理
6. 结论
-
表 1 实验与有限元模拟结果对比
Table 1. Comparison of simulation results and experimental results
类别 试件 vi/(m·s-1) vr, exp/(m·s-1) vr, CSCM/(m·s-1) vr, HJC/(m·s-1) vr, CSCM/vr, exp vr, HJC/vr, exp A1 218 166 160 148 0.964 0.892 A2 250 199 197 191 0.990 0.960 素混凝土 A3 376 280 277 323 0.989 1.154 A4 620 529 540 553 1.021 1.045 B1 501 301 332 326 1.103 1.083 B2 753 554 551 566 0.995 1.022 C1 193 131 120 96 0.916 0.732 C2 268 195 195 191 1.000 0.979 钢筋混凝土 C3 361 300 290 283 0.967 0.943 C4 608 528 512 519 0.958 0.982 C5 812 701 704 735 1.004 1.049 C6 1 246 1 111 1 170 1 220 1.053 1.098 -
[1] IQBAL M A, RAI S, SADIQUE M R, et al. Numerical simulation of aircraft crash on nuclear containment structure[J]. Nuclear Engineering and Design, 2012, 243:321-335. doi: 10.1016/j.nucengdes.2011.11.019 [2] SADIQUE M R, IQBAL M A, BHARGAVA P. Nuclear containment structure subjected to commercial and fighter aircraft crash[J]. Nuclear Engineering and Design, 2013, 260:30-46. doi: 10.1016/j.nucengdes.2013.03.009 [3] MOHAMMED R K, MICHELLE S H F. Impact of the Boeing 767 Aircraft into the World Trade Center[J]. Journal of Engineering Mechanics, 2005, 131:1066-1072. doi: 10.1061/(ASCE)0733-9399(2005)131:10(1066) [4] FAN F, WANG D Z, ZHI X D, et al. Failure modes of reticulated domes subjected to impact and the judgment[J]. Thin-Walled Structures, 2010, 48(2):143-149. doi: 10.1016/j.tws.2009.08.005 [5] FAN F, WANG D Z, ZHI X D, et al. Failure modes for single-layer reticulated domes under impact loads[J]. Transactions of Tianjin University, 2008, 14(suppl):545-550. [6] WANG D Z, ZHI X D, FAN F, et al. Failure process and energy transmission for single-layer reticulated domes under impact loads[J]. Transactions of Tianjin University, 2008, 14(suppl):551-557. doi: 10.1007-s12209-008-0095-6/ [7] 张云峰, 张钊, 薛景宏, 等.LNG储罐外罐壁在冲击荷载作用下的受力分析[J].大庆石油学院学报, 2011, 35(6):93-96. doi: 10.3969/j.issn.2095-4107.2011.06.019ZHANG Yunfeng, ZHANG Zhao, XUE Jinghong, et al. Stress analysis of the outer wall of LNG storage tank under impact loading[J]. Journal of Daqing Petroleum Institute, 2011, 35(6):93-96. doi: 10.3969/j.issn.2095-4107.2011.06.019 [8] 苏娟, 刘玉玺, 荆潇, 等.冲击荷载作用下LNG混凝土储罐力学性能分析[J].中国造船, 2012, 53(增刊2):241-248. http://d.old.wanfangdata.com.cn/Conference/7767963SU Juan, LIU Yuxi, JING Xiao, et al. Mechanical analysis of LNG prestressed concrete tank for blast loading[J]. Shipbuilding of China, 2012, 53(suppl 2):241-248. http://d.old.wanfangdata.com.cn/Conference/7767963 [9] 崔利富, 孙建刚, 周国发, 等.冲击荷载作用下LNG储罐外罐力学性能数值仿真分析[J].自然灾害学报, 2016, 25(4):167-175. http://cdmd.cnki.com.cn/Article/CDMD-10731-1016906687.htmCUI Lifu, SUN Jiangang, ZHOU Guofa, et al. Numerical simulation analysis of LNG outer tank of mechanical properties under impact load[J]. Journal of Natural Disasters, 2016, 25(4):167-175. http://cdmd.cnki.com.cn/Article/CDMD-10731-1016906687.htm [10] BS 7777-1: 1993 Flat-bottomed, vertical, cylindrical storage tanks for low temperature service[S]. [11] 董军, 邓国强, 杨科之, 等.弹丸对混凝土薄板的冲击破坏效应[J].岩石力学与工程学报, 2005, 24(4):713-720. doi: 10.3321/j.issn:1000-6915.2005.04.029DONG Jun, DENG Guoqiang, YANG Kezhi, et al. Damage effect of thin concrete slabs subjected to projectile impact[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4):713-720. doi: 10.3321/j.issn:1000-6915.2005.04.029 [12] ANSYS/LS-DYNA使用指南[Z].北京: 安世亚太, 1999: 57-58. [13] MURRAY Y D. Users manual for LS-DYNA concrete material model 159[Z]. Mc Lean, VA: Federal Highway Administration, 2007. 期刊类型引用(9)
1. 罗宁,柴亚博,周嘉楠,魏大海,李鹏龙. 薄壁筒体构筑物拆除爆破智能化软件设计与开发. 工程爆破. 2024(06): 93-101 . 百度学术
2. 徐顺香,吴赛格,罗鹏,王威,陈德志,谢广波. 复杂环境下110 m冷却塔控制爆破拆除. 爆破. 2023(03): 129-133 . 百度学术
3. 汪高龙,王潇,李跟,夏卫国. 复杂环境90m高双曲线冷却塔拆除爆破. 工程爆破. 2021(01): 62-68 . 百度学术
4. 白晓阳,樊永利. 大型冷却塔控制爆破技术及危害控制研究. 现代制造技术与装备. 2021(05): 116-117 . 百度学术
5. 费鸿禄,王帅,钱起飞. 烟囱定向爆破拆除前冲及塌落触地振动研究. 爆破. 2021(03): 95-103 . 百度学术
6. 刘桂勇,李坤鹏. 复杂环境61 m高双曲线冷却塔拆除爆破. 工程爆破. 2021(06): 86-91 . 百度学术
7. 谢亮波,王铭,张西良,仪海豹,顾红建,江东平. 薄壁型钢混结构烟囱控制爆破拆除. 爆破. 2020(02): 75-79 . 百度学术
8. 费鸿禄,高建军,张超逸,张龙飞. 冷却塔爆破拆除塔壁触地解体规律研究. 爆破. 2019(04): 86-95 . 百度学术
9. 徐鹏飞,唐英,张英才,王磊,张何,刘乐乐. 冷却塔高卸荷槽切口爆破拆除倒塌受力破坏过程研究. 爆破. 2019(04): 96-102+107 . 百度学术
其他类型引用(3)
-