Ar稀释C2H2+2.5O2预混气高频爆轰的端面结构

赵焕娟 伯玉兰 张英华 严屹然

赵焕娟, 伯玉兰, 张英华, 严屹然. Ar稀释C2H2+2.5O2预混气高频爆轰的端面结构[J]. 爆炸与冲击, 2018, 38(5): 1121-1129. doi: 10.11883/bzycj-2017-0098
引用本文: 赵焕娟, 伯玉兰, 张英华, 严屹然. Ar稀释C2H2+2.5O2预混气高频爆轰的端面结构[J]. 爆炸与冲击, 2018, 38(5): 1121-1129. doi: 10.11883/bzycj-2017-0098
ZHAO Huanjuan, BO Yulan, ZHANG Yinghua, YAN Yiran. High-frequency spiral detonation end-on records of premixed C2H2+2.5O2 with different argon dilution[J]. Explosion And Shock Waves, 2018, 38(5): 1121-1129. doi: 10.11883/bzycj-2017-0098
Citation: ZHAO Huanjuan, BO Yulan, ZHANG Yinghua, YAN Yiran. High-frequency spiral detonation end-on records of premixed C2H2+2.5O2 with different argon dilution[J]. Explosion And Shock Waves, 2018, 38(5): 1121-1129. doi: 10.11883/bzycj-2017-0098

Ar稀释C2H2+2.5O2预混气高频爆轰的端面结构

doi: 10.11883/bzycj-2017-0098
基金项目: 

国家自然科学基金项目 11602017

中央高校基本科研业务费专项项目 FRF-TP-15-105A1

中国博士后科学基金项目 2015M580049

详细信息
    作者简介:

    赵焕娟(1985-), 女, 博士, 副教授

    通讯作者:

    张英华, zyhustb@163.com

  • 中图分类号: O381;TD774

High-frequency spiral detonation end-on records of premixed C2H2+2.5O2 with different argon dilution

  • 摘要: 为了研究预混气爆轰的内部结构,对不同浓度的Ar稀释的C2H2+2.5O2预混气进行爆轰实验和数值计算。首先,在内径63.5 mm的管道内进行爆轰实验,使用烟熏玻璃记录了不同初始压力下C2H2+2.5O2预混气的爆轰端面结构。使用数字化图像处理技术来分析烟熏玻璃记录的三波点轨迹,以减少人为误差。然后,观察实验结果并描绘规则图形,图像识别程序经过验证后,用于分析实验结果。从端面结构中对封闭图形进行圆的拟合,用胞格半径方差来表示胞格大小的均匀程度;用相邻胞格圆心距的方差来表示胞格分布的规则程度。通过对比不同Ar稀释下半径方差和圆心距方差随胞格数量的变化,给出不同浓度Ar稀释下C2H2+2.5O2预混气的端面胞格尺寸及分布规律,随着Ar浓度的升高,预混气端面胞格分布更加规律。
  • 图  1  直径63.5 mm爆轰管道的结构简图

    Figure  1.  Schematic diagram of detonation tube with diameter of 63.5 mm

    图  2  C2H2+2.5O2+70%Ar预混气的烟膜记录

    Figure  2.  Smoked foils records of premixed C2H2+2.5O2+70%Ar

    图  3  C2H2+2.5O2+85%Ar预混气的烟膜记录

    Figure  3.  Smoked foils records of premixed C2H2+2.5O2+85%Ar

    图  4  C2H2+2.5O2+70%Ar预混气的端面示意图

    Figure  4.  End-on result of premixed C2H2+2.5O2+70%Ar

    图  5  C2H2+2.5O2+85%Ar预混气的端面示意图

    Figure  5.  End-on result of premixed C2H2+2.5O2+85%Ar

    图  6  预混气端面处理结果示意图

    Figure  6.  Schematic diagram of end-on results of premixed gas

    图  7  C2H2+2.5O2+70%Ar预混气爆轰端面结构半径等间距直方图

    Figure  7.  Histograms with same radius distance

    图  8  C2H2+2.5O2+70%Ar预混气爆轰端面结构圆心距等间距直方图

    Figure  8.  Histograms with same center distance

    图  9  C2H2+2.5O2+85%Ar预混气爆轰端面结构半径等间距直方图

    Figure  9.  Histograms with same radius distance

    图  10  C2H2+2.5O2+85%Ar预混气爆轰端面结构圆心距等间距直方图

    Figure  10.  Histograms with same center distance

    图  11  不同浓度预混气胞格半径方差随胞格数的变化

    Figure  11.  Variation of radius variance with numberof cell for different Ar concentrations

    图  12  不同浓度预混气相邻胞格圆心距方差随胞格数的变化

    Figure  12.  Variation of center distance variance with numberof cell for different Ar concentrations

    表  1  预混气在不同压力状况下的半径方差、圆心距方差及胞格数

    Table  1.   Radius variance, center distance variance and number of cells under different pressures

    压力状况 V(r)/mm V(l)/mm n
    (a) 4.032 6 5.944 0 34
    (b) 3.140 5 5.091 7 39
    (c) 1.107 0 2.098 0 77
    (d) 0.255 1 0.561 7 119
    下载: 导出CSV

    表  2  C2H2+2.5O2+70%Ar在不同压力下的半径方差和圆心距方差

    Table  2.   Radius variance, center distance variance ofC2H2 +2.5O2+70% Ar under different pressures

    p/kPa V(r)/mm V(l)/mm
    5.32 3.169 8 9.983 9
    5.74 2.446 1 7.080 4
    7.45 2.145 4 5.511 7
    10.57 0.674 8 2.189 6
    12.71 0.331 2 1.218 9
    下载: 导出CSV

    表  3  C2H2+2.5O2+85%Ar在不同压力下的半径方差和圆心距方差

    Table  3.   Radius variance, center distance variance ofC2H2 +2.5O2+85% Ar under different pressures

    p/kPa V(r)/mm V(l)/mm
    8.40 11.779 9 26.149 0
    10.50 5.065 9 10.481 2
    14.00 1.910 5 6.992 6
    15.57 1.905 4 5.861 6
    16.23 1.354 0 4.797 7
    下载: 导出CSV
  • [1] STREHLOW R A, LIAUGMINAS R, WATSON R H, et al. Transverse wave structure in detonations[J]. Symposium on Combustion, 1967, 11(1):683-692. doi: 10.1016/S0082-0784(67)80194-2
    [2] 喻健良, 高远, 闫兴清, 等.高浓度氩气稀释气体爆轰波临界管径和临界间距关系[J].爆炸与冲击, 2015, 35(4):603-608. http://www.bzycj.cn/CN/abstract/abstract9507.shtml

    YU Jianliang, GAO Yuan, YAN Xingqing, et al. Correlation between the critical tube diameter and annular interval for detonation wave in high-concentration argon diluted mixtures[J]. Explosion and Shock Waves, 2015, 35(4):603-608. http://www.bzycj.cn/CN/abstract/abstract9507.shtml
    [3] BIVOL G Y, GOLOVASTOV S V, GOLUB V V. Prechamber initiation of gaseous detonation in a channel[J]. Combustion Science and Technology, 2016, 188(7):1165-1179. doi: 10.1080/00102202.2016.1177030
    [4] 张博, 白春华.气相爆轰动力学特征研究进展[J].中国科学:物理学、力学、天文学, 2014, 44(7):665-681. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201407002.htm

    ZHANG Bo, BAI Chunhua. Research progress on the dynamic characteristics of gaseous detonation[J]. Scientia Sinica:Physica, Mechanica and Astronomica, 2014, 44(7):665-681. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201407002.htm
    [5] 姜宗林, 滕宏辉.气相规则胞格爆轰波起爆与传播统一框架的几个关键基础问题研究[J].中国科学:物理学、力学、天文学, 2012, 42(4):421-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200276792

    JIANG Zonglin, TENG Honghui. Research on some fundamental problems of the universal framework for regular gaseous detonation initiation and propagation[J]. Scientia Sinica:Physica, Mechanica and Astronomica, 2012, 42(4):421-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200276792
    [6] 张博, LEE J H S, 白春华.高浓度氩气稀释对C2H2-2.5O2气体直接起爆临界能量影响的实验研究[J].高压物理学报, 2012, 26(1):55-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200210068

    ZHANG Bo, LEE J H S, BAI Chunhua. Experiment investigation of the influence of highly argon dilution on the critical initiation energy for direct initiation of C2H2-2.5O2 mixtures[J]. Chinese Journal of High Pressure Physics, 2012, 26(1):55-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200210068
    [7] 韩学斌.管道内甲烷-空气预混气体火焰传播特性和结构特征的研究[D].北京: 北京化工大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10010-1012217656.htm
    [8] TROTSYUK A V, FOMIN P A, VASIL'EV A A. Numerical study of cellular detonation structures of methane mixtures[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:394-403. doi: 10.1016/j.jlp.2015.03.012
    [9] 徐晓峰, 解立峰, 彭金华, 等.环氧丙烷-空气混合物爆轰波胞格结构的研究[J].爆炸与冲击, 2004, 24(2):158-162. doi: 10.3321/j.issn:1001-1455.2004.02.010

    XU Xiaofeng, XIE Lifeng, PENG Jinhua, et al. Study on the detonation cellular structure of propylene epoxide-air[J]. Explosion and Shock Waves, 2004, 24(2):158-162. doi: 10.3321/j.issn:1001-1455.2004.02.010
    [10] 王昌建, 徐胜利.直管内胞格爆轰的基元反应数值研究[J].爆炸与冲击, 2005, 25(5):405-416. doi: 10.3321/j.issn:1001-1455.2005.05.004

    WANG Changjian, XU Shengli. Numerical study on cellular detonation in a straight tube based on detailed chemical reaction model[J]. Explosion and Shock Waves, 2005, 25(5):405-416. doi: 10.3321/j.issn:1001-1455.2005.05.004
    [11] 刘岩, 武丹, 王健平.低马赫数下斜爆轰波的结构[J].爆炸与冲击, 2015, 35(2):203-207. http://www.bzycj.cn/CN/abstract/abstract9448.shtml

    LIU Yan, WU Dan, WANG Jianping. Structure of oblique detonation wave at low inflow Mach number[J]. Explosion and Shock Waves, 2015, 35(2):203-207. http://www.bzycj.cn/CN/abstract/abstract9448.shtml
    [12] TENG H, NG H D, KANG L, et al. Evolution of cellular structures on oblique detonation surfaces[J]. Combustion & Flame, 2014, 162(2):470-477. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234190457
    [13] SHEPHERD J E, MOEN I O, MURRAY S B, et al. Analyses of the cellular structure of detonations[J]. Symposium on Combustion, 1986, 21(1):1649-1658. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0520071203172251
    [14] SHEPHERD J E, TIESZEN S R. Detonation cellular structure and image proces[C]//The 21st International Symposium on Combustion. Munich, West Germany, 1986.
    [15] LEE J J, FROST D L, LEE J H S, et al. Digital signal processing analysis of soot foils[C]//KUHL A, LEYER J, BORISOV A, et al. Dynamic aspects of detonations. American Institute of Aeronautics and Astronautics, 1993: 182-202.
    [16] LEE J J, GARINIS D, FROST D L, et al. Two-dimensional autocorrelation function analysis of smoked foil patterns[J]. Shock Waves, 1995, 5(3):169-174. doi: 10.1007/BF01435524
    [17] ZHAO H J, LEE J H S, LEE J, et al. Quantitative comparison of cellular patterns of stable and unstable mixtures[J]. Shock Waves, 2016, 26(5):621-633. doi: 10.1007/s00193-016-0673-9
    [18] 赵焕娟, LEE J H S, 张英华, 等.边界条件对甲烷预混气爆轰特性的影响[J].爆炸与冲击, 2017, 37(2):201-207. http://www.bzycj.cn/CN/abstract/abstract9706.shtml

    ZHAO Huanjuan, LEE J H S, ZHANG Yinghua, et al. Effects of boundary conditions on premixed CH4+2O2 detonation characteristics[J]. Explosion and Shock Waves, 2017, 37(2):201-207. http://www.bzycj.cn/CN/abstract/abstract9706.shtml
    [19] LEE J H S. The detonation phenomenon[M]. New York:Cambridge University Press, 2008.
    [20] VOITSEKHOVSKⅡ B V, MITROFANOV V V, TOPCHIYAN M E. Structure of the detonation front in gases (survey)[J]. Combustion, Explosion, and Shock Waves, 1969, 5(3):267-273. doi: 10.1007/BF00748606
    [21] 赵焕娟, LEE J H S, 张英华, 等.爆轰波三波点擦除烟迹表面积碳机制[J].工程科学学报, 2017, 39(3):335-341. http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201703003

    ZHAO Huanjuan, LEE J H S, ZHANG Yinghua, et al. Precise mechanism of triple point passage removing soot on soot-coated surface[J]. Chinese Journal of Engineering, 2017, 39(3):335-341. http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201703003
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  4829
  • HTML全文浏览量:  1382
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-29
  • 修回日期:  2017-09-08
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回