基于激光干涉测试技术的分离式Hopkinson压杆实验测试系统

张振 王永刚

张振, 王永刚. 基于激光干涉测试技术的分离式Hopkinson压杆实验测试系统[J]. 爆炸与冲击, 2018, 38(5): 1165-1171. doi: 10.11883/bzycj-2017-0116
引用本文: 张振, 王永刚. 基于激光干涉测试技术的分离式Hopkinson压杆实验测试系统[J]. 爆炸与冲击, 2018, 38(5): 1165-1171. doi: 10.11883/bzycj-2017-0116
ZHANG Zhen, WANG Yonggang. Measurement system for split Hopkinson pressure bar apparatus based on laser interferometry technique[J]. Explosion And Shock Waves, 2018, 38(5): 1165-1171. doi: 10.11883/bzycj-2017-0116
Citation: ZHANG Zhen, WANG Yonggang. Measurement system for split Hopkinson pressure bar apparatus based on laser interferometry technique[J]. Explosion And Shock Waves, 2018, 38(5): 1165-1171. doi: 10.11883/bzycj-2017-0116

基于激光干涉测试技术的分离式Hopkinson压杆实验测试系统

doi: 10.11883/bzycj-2017-0116
基金项目: 

国家自然科学基金项目 11472142

详细信息
    作者简介:

    张振(1991-), 男, 硕士研究生

    通讯作者:

    王永刚, wangyonggang@nbu.edu.cn

  • 中图分类号: O347.3

Measurement system for split Hopkinson pressure bar apparatus based on laser interferometry technique

  • 摘要: 分离式Hopkinson压杆(SHPB)实验的传统测试技术是基于应变片的电测技术,测试结果的可靠性强烈依赖于应变片与杆之间粘贴质量,受到人为因素的影响较大。本文中采用基于多普勒频移原理的双探头全光纤激光干涉测速技术,以粒子速度为监测目标,借助应力波传播理论,换算成试件的应变和应力,从而建立了SHPB实验的非接触光学测试系统。针对韧性和脆性两类材料,分别提出了激光正入射和激光斜入射两种测试技术。再以铝合金和PZT陶瓷为例,通过与传统的应变片测试结果以及DIC测量结果的对比分析,验证了两种测试技术的有效性。与传统的应变片测试技术相比,新的激光干涉测试技术具有免标定、抗干扰、可靠性高等许多优点,有助于实现SHPB实验测试系统标准化。
  • 图  1  激光多普勒测速原理示意图

    Figure  1.  Scheme of photonics Doppler velocimetry

    图  2  SHPB实验装置和测试系统示意图

    Figure  2.  Setup of SHPB with different measurement systems

    图  3  径向膨胀速度和自由端粒子速度曲线

    Figure  3.  Radial velocity profile of specimen andfree surface velocity profile of transmission bar

    图  4  工程应变曲线对比

    Figure  4.  Comparison of engineering strain profilesmeasured by different methods

    图  5  工程应力曲线对比

    Figure  5.  Comparison of engineering stress profilesmeasured by laser and strain gauge

    图  6  入射波、反射波和透射波的应变曲线

    Figure  6.  Strain profiles of incident wave, transmitted and reflected wave

    图  7  激光干涉法测得的粒子速度曲线

    Figure  7.  Particle velocity profiles measuredby laser interferometer

    图  8  激光干涉法和应变片法得到的应变曲线对比

    Figure  8.  Comparison of strain profiles measuredby laser interferometer and strain gauge

  • [1] KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society of London:B, 1949, 62(1):676-700. http://www.emeraldinsight.com/servlet/linkout?suffix=b11&dbid=16&doi=10.1108%2F13552541211212131&key=10.1088%2F0370-1301%2F62%2F11%2F302
    [2] 李玉龙, 郭伟国, 徐绯, 等.Hopkinson压杆技术的推广应用[J].爆炸与冲击, 2006, 26(5):385-394. doi: 10.3321/j.issn:1001-1455.2006.05.001

    LI Yulong, GUO Weiguo, XU Fei, et al. The extended application of Hopkinson bar technique[J]. Explosion and Shock Waves, 2006, 26(5):385-394. doi: 10.3321/j.issn:1001-1455.2006.05.001
    [3] 陈荣, 卢芳云, 林玉亮, 等.分离式Hopkinson压杆实验技术研究进展[J].力学进展, 2009, 39(5):576-587. doi: 10.3321/j.issn:1000-0992.2009.05.007

    CHEN Rong, LU Fangyun, LIN Yuliang, et al. A critical review of split Hopkinson pressure bar technique[J]. Advances in Mechanics, 2009, 39(5):576-587. doi: 10.3321/j.issn:1000-0992.2009.05.007
    [4] 胡时胜, 王礼立, 宋力, 等.Hopkinson压杆技术在中国的发展回顾[J].爆炸与冲击, 2014, 34(6):641-657. http://www.bzycj.cn/CN/abstract/abstract9373.shtml

    HU Shisheng, WANG Lili, SONG Li, et al. Review of the development of Hopkinson pressure bar technique in China[J]. Explosion and Shock Waves, 2014, 34(6):614-657. http://www.bzycj.cn/CN/abstract/abstract9373.shtml
    [5] CHEN W, SONG B. Split Hopkinson (Kolsky) bar:Design, testing and application[M]. New York:Springer, 2011.
    [6] IWAMOTO T, YOKOYAMA T. Effects of radial inertia and end friction in specimen geometry in split Hopkinson pressure bar tests:A computational study[J]. Mechanics of Materials, 2012, 51:97-109. doi: 10.1016/j.mechmat.2012.04.007
    [7] LU F Y, LI Y L, WANG X Y, et al. A theoretical analysis about the influence of interfacial friction in SHPB tests[J]. International Journal of Impact Engineering, 2015, 79:95-101. doi: 10.1016/j.ijimpeng.2014.10.008
    [8] YANG L M, SHIM V P W. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. International Journal of Impact Engineering, 2005, 31(2):129-150. doi: 10.1016/j.ijimpeng.2003.09.002
    [9] LIU J, SALETTI D, PATTOFATTO S, et al. Impact testing of polymeric foam using Hopkinson bars and digital image analysis[J]. Polymer Testing, 2014, 36:101-109. doi: 10.1016/j.polymertesting.2014.03.014
    [10] SATO K, YU Q, HIRAMOTO J, et al. A method to investigate strain rate effects on necking and fracture behaviors of advanced high-strength steels using digital imaging strain analysis[J]. International Journal of Impact Engineering, 2015, 75:11-26. doi: 10.1016/j.ijimpeng.2014.07.001
    [11] 申海艇, 蒋招绣, 王贝壳, 等.基于超高速相机的数字图像相关性全场应变分析在SHTB实验中的应用[J].爆炸与冲击, 2017, 37(1):15-20. http://www.bzycj.cn/CN/abstract/abstract9680.shtml

    SHEN Haiting, JIANG Zhaoxiu, WANG Beike, et al. Full field strain measurement in split Hopkinson tension bar experiments by using ultra-high-speed camera with digital image correlation[J]. Explosion and Shock Waves, 2017, 37(1):15-20. http://www.bzycj.cn/CN/abstract/abstract9680.shtml
    [12] RAMESH K T, NARASIMHAN S. Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments[J]. International Journal of Solids and Structures, 1996, 33(25):3723-3738. doi: 10.1016/0020-7683(95)00206-5
    [13] LI Y, RAMESH K T. An optical technique for measurement of material properties in the tension Kolsky bar[J]. International Journal of Impact Engineering, 2007, 34(4):784-798. doi: 10.1016/j.ijimpeng.2005.12.002
    [14] BARKER L M, HOLLENBACK R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11):4469-4675. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5098032
    [15] WENG Jidong, TAN Hua, HU Shaolou, et al. New all-fiber velocimeter[J]. Review of Scientific Instruments, 2005, 76(9):093301. doi: 10.1063/1.2008989
    [16] WU X, WANG X, WEI Y, et al. An experimental method to measure dynamic stress-strain relationship of materials at high strain rates[J]. International Journal of Impact Engineering, 2014, 69(4):149-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232649508
    [17] LEA L J, JARDINE A P. Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars[J]. Review of Scientific Instruments, 2016, 87(2):023101. doi: 10.1063/1.4940935
    [18] 王礼立.应力波基础[M].2版.北京:国防工业出版社, 2005.
    [19] 翁继东, 谭华, 陈金宝, 等.光纤任意反射面速度干涉系统在高压物理中的应用[J].高压物理学报, 2004, 18(3):225-230. doi: 10.3969/j.issn.1000-5773.2004.03.006

    WENG Jidong, TAN Hua, CHEN Jinbao, et al. Application of fiber velocity interferometer system for any reflector in high pressure physics[J]. Chinese Journal of High Pressure Physics, 2004, 18(3):225-230. doi: 10.3969/j.issn.1000-5773.2004.03.006
    [20] 杨军, 王克逸, 徐海斌, 等.光纤位移干涉仪的研制及其在Hopkinson压杆实验中的应用[J].红外与激光工程, 2013, 42(1):102-107. doi: 10.3969/j.issn.1007-2276.2013.01.019

    YANG Jun, WANG Keyi, XU haibin, et al. Development of an optical-fiber displacement interferometer and its application in Hopkinson pressure bar experiment[J]. Infrared and Laser Engineering, 2013, 42(1):102-107. doi: 10.3969/j.issn.1007-2276.2013.01.019
  • 加载中
图(8)
计量
  • 文章访问数:  5248
  • HTML全文浏览量:  1657
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-05-17
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回