爆破开挖振动下既有大型储油罐的动力响应

陈洋 吴亮 许锋 鲁帅

陈洋, 吴亮, 许锋, 鲁帅. 爆破开挖振动下既有大型储油罐的动力响应[J]. 爆炸与冲击, 2018, 38(6): 1394-1403. doi: 10.11883/bzycj-2017-0128
引用本文: 陈洋, 吴亮, 许锋, 鲁帅. 爆破开挖振动下既有大型储油罐的动力响应[J]. 爆炸与冲击, 2018, 38(6): 1394-1403. doi: 10.11883/bzycj-2017-0128
CHEN Yang, WU Liang, XU Feng, LU Shuai. Dynamic response of existing large oil storage tank under blasting excavation vibration[J]. Explosion And Shock Waves, 2018, 38(6): 1394-1403. doi: 10.11883/bzycj-2017-0128
Citation: CHEN Yang, WU Liang, XU Feng, LU Shuai. Dynamic response of existing large oil storage tank under blasting excavation vibration[J]. Explosion And Shock Waves, 2018, 38(6): 1394-1403. doi: 10.11883/bzycj-2017-0128

爆破开挖振动下既有大型储油罐的动力响应

doi: 10.11883/bzycj-2017-0128
基金项目: 

国家自然科学基金项目 51004079

国家自然科学基金项目 51479147

国家自然科学基金项目 11602178

湖北省自然科学基金项目 2014CFB822

详细信息
    作者简介:

    陈洋(1994-), 男, 硕士研究生

    通讯作者:

    吴亮, wuliangwust@sina.com

  • 中图分类号: O383

Dynamic response of existing large oil storage tank under blasting excavation vibration

  • 摘要: 针对既有大型储油罐近区基础爆破开挖中的安全问题,采用ANSYS/LS-DYNA的隐式-显式顺序求解方法,结合流固耦合算法,研究了爆破振动下大型储油罐的动力响应规律。分析了罐壁不同位置的质点振速,由于质点振速分布情况较为复杂,不宜用局部质点振速判断罐壁危险点;总结了罐壁上应力的分布规律,结果显示爆破振动对储油罐的影响主要集中在迎爆侧下部,且在罐壁迎爆侧高度为3 m左右的位置最易发生象足屈曲;分析了不同频率爆破振动作用下满载储罐罐壁的质点振速,结果表明在爆破振动主频范围内,载荷频率远大于储罐固有频率条件下,罐壁上质点振速随着爆破振动频率的降低呈减小趋势;建立了储油罐罐壁质点振速与罐内液面高度的关系,结果表明降低液面高度可以有效提高储油罐的爆破振动安全阈值,爆破施工中邻近储罐储液高度不宜高于10 m。
  • 图  1  隐式-显式顺序分析流程图

    Figure  1.  Flow chart of implicit-to-explicit sequential solution procedure

    图  2  载荷等效示意图

    Figure  2.  Schematic diagram of equivalent loade

    图  3  储油罐模型示意图

    Figure  3.  Schematic diagram of oil storage tank model

    图  4  储油罐有限元模型

    Figure  4.  Finite element model of oil tank

    图  5  BIKN材料本构关系

    Figure  5.  Constitutive relation of BIKN material

    图  6  罐壁上质点振速时程曲线

    Figure  6.  The particle vibration velocity histories of tank wall

    图  7  x方向质点振速沿高度的变化曲线

    Figure  7.  Curves of the particle vibration velocity vs. height along x direction

    图  8  z方向质点振速沿高度的变化曲线

    Figure  8.  Curves of z direction particle vibration velocity vs. height

    图  9  测点在罐壁圆周上的位置

    Figure  9.  Positions of measuring points on the circumference of tank wall

    图  10  沿罐壁圆周不同位置的质点振速

    Figure  10.  Particle vibration velocity of different measuring points along the circumference of the tank wall

    图  11  罐壁上应力沿高度的分布情况

    Figure  11.  Distribution of stress along heights on the tank wall

    图  12  罐壁上应力沿周向的分布情况

    Figure  12.  Distribution of stress along the circumferential direction of the tank wall

    图  13  罐壁质点振速与罐内液体液面高度的关系

    Figure  13.  Curves of particle vibration velocity vs. liquid level in tank

    图  14  罐壁正面顶部x向的质点振速与载荷频率的关系

    Figure  14.  Curves of the particle vibration velocity vs. load frequency along x direction

    图  15  罐壁正面顶部z向的质点振速与载荷频率的关系

    Figure  15.  Curves of the particle vibration velocity vs. load frequency along z direction

    表  1  罐壁详细参数

    Table  1.   Detailed parameters of tank wall

    层数 壁厚/mm 层高/mm 材料
    1 32.0 2 420 SPV490Q
    2 27.0 2 420 SPV490Q
    3 21.5 2 420 SPV490Q
    4 18.5 2 420 SPV490Q
    5 15.0 2 420 SPV490Q
    6 12.0 2 420 SPV490Q
    7 12.0 2 420 SPV490Q
    8 12.0 2 380 Q-235A.F
    9 12.0 2 380 Q-235A.F
    下载: 导出CSV

    表  2  材料基本参数

    Table  2.   Basic parameters of the materials

    材料 E/GPa μ ρ/(kg·m-3) ν/(MPa·s) G/GPa Et/GPa σs/MPa
    罐体 210.00 0.30 7 850 - - 22.06 490
    基础 - 0.25 2 700 - 15.40 - -
    液体 2.18 - 1 000 1.13 - - -
    空气 0 - 1.20 - - - -
    下载: 导出CSV

    表  3  储油罐前20阶模态

    Table  3.   The first 20 modes of storage tank

    频率/Hz
    流固耦合模态
    (本文)
    空罐模态
    本文 文献[9]
    1 0.357 27 1.151 6 1.153 7
    2 0.357 32 1.151 6 1.153 7
    3 0.358 18 1.159 3 1.161 9
    4 0.358 18 1.159 3 1.161 9
    5 0.363 38 1.164 1 1.165 4
    6 0.363 38 1.164 1 1.165 4
    7 0.365 83 1.190 1 1.192 8
    8 0.365 89 1.190 1 1.192 8
    9 0.376 52 1.194 2 1.194 2
    10 0.376 57 1.194 2 1.194 2
    11 0.380 07 1.239 3 1.237 3
    12 0.380 07 1.239 3 1.237 3
    13 0.396 89 1.246 5 1.249 4
    14 0.396 89 1.246 5 1.249 4
    15 0.400 39 1.297 3 1.292 3
    16 0.400 46 1.297 3 1.292 3
    17 0.424 61 1.331 4 1.334 5
    18 0.424 65 1.331 4 1.334 5
    19 0.426 53 1.366 2 1.356 6
    20 0.426 53 1.366 2 1.356 6
    下载: 导出CSV
  • [1] 陈志平, 沈建民, 葛颂, 等.基于组合圆柱壳理论的大型油罐应力分析[J].浙江大学学报(工学版), 2006, 40(9):1633-1637. doi: 10.3785/j.issn.1008-973X.2006.09.035

    CHEN Zhiping, SHEN Jianmin, GE Song, et al. Stress analysis of large oil storage tanks based on combined cylindrical shell[J]. Journal of Zhejiang University (Engineering Science), 2006, 40(9):1633-1637. doi: 10.3785/j.issn.1008-973X.2006.09.035
    [2] 张云峰, 袁朝庆, 孙建刚.储罐三维地震响应分析[J].东北石油大学学报, 2003, 27(2):71-74. doi: 10.3969/j.issn.2095-4107.2003.02.023

    ZHANG Yunfeng, YUAN Zhaoqing, SUN Jiangang. Seismic response analysis of three-dimension tank[J]. Journal of Northeast Petroleum University, 2003, 27(2):71-74. doi: 10.3969/j.issn.2095-4107.2003.02.023
    [3] 孙建刚, 王振, 杨宇, 等.模型储罐三维地震反应振动台试验研究[J].地震工程与工程振动, 2008, 28(5):122-132. http://d.old.wanfangdata.com.cn/Periodical/dzgcygczd200805017

    SUN Jiangang, WANG Zhen, YANG Yu, et al. Finite element analysis of 3D seismic response of unanchored liquid storage tanks[J]. Earthquake Engineering and Engineering Vibration, 2008, 28(5):122-132. http://d.old.wanfangdata.com.cn/Periodical/dzgcygczd200805017
    [4] 孙建刚, 张丽, 袁朝庆.立式储罐基础隔震动力反应特性分析[J].地震工程与工程振动, 2001, 21(3):140-144. doi: 10.3969/j.issn.1000-1301.2001.03.025

    SUN Jiangang, ZHANG Li, YUAN Zhaoqing. Dynamic characteristic analysis of base isolation for vertical storage tank[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(3):140-144. doi: 10.3969/j.issn.1000-1301.2001.03.025
    [5] 孙建刚, 郝进锋, 刘扬, 等.考虑摆动效应的立式储罐隔震分析筒化力学模型[J].振动与冲击, 2016, 35(11):20-27. http://d.wanfangdata.com.cn/Periodical/zdycj201611004

    SUN Jiangang, HAO Jinfeng, LIU Yang, et al. Simplified mechanical model for vibration isolation analysis of a vertical storage tank considering swinging effect[J]. Journal of Vibration and Shock, 2016, 35(11):20-27. http://d.wanfangdata.com.cn/Periodical/zdycj201611004
    [6] 王开志, 杨旭升, 梁秋祥.某部储油罐基础开挖爆破设计[J].工程爆破, 2016, 22(4):77-81. doi: 10.3969/j.issn.1006-7051.2016.04.016

    WANG Kaizhi, YANG Xusheng, LIANG Qiuxiang. Blast design of oil storage tank foundation excavation[J]. Engineering Blasting, 2016, 22(4):77-81. doi: 10.3969/j.issn.1006-7051.2016.04.016
    [7] 许红涛.岩石高边坡爆破动力稳定性研究[D].武汉: 武汉大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10486-2008010820.htm
    [8] 张艳.高层结构地震放大作用及反应分析[D].哈尔滨: 中国地震局工程力学研究所, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D152445
    [9] 毕先志, 张巨伟, 崔晓韵, 等.10×104 m3浮顶储油罐的模态分析[J].当代化工, 2011, 40(9):972-974. doi: 10.3969/j.issn.1671-0460.2011.09.027

    BI Xianzhi, ZHANG Juwei, CUI Xiaoyun, et al. Modal analysis of 10×104 m3 floating roof storage tank[J]. Contemporary Chemical Industry, 2011, 40(9):972-974. doi: 10.3969/j.issn.1671-0460.2011.09.027
    [10] 钱七虎, 陈士海.爆破地震效应[J].爆破, 2004, 21(2):1-5. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb200805009

    QIAN Qihu, CHEN Shihai. Blasting seismic effect[J]. Blasting, 2004, 21(2):1-5. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb200805009
    [11] 于蕾.爆破振动对多层建筑物的安全影响[J].铁道工程学报, 2015, 32(3):86-89. doi: 10.3969/j.issn.1006-2106.2015.03.018

    YU Lei. Safety influence of blasting vibration on multistory building[J]. Journal of Railway Engineering Society, 2015, 32(3):86-89. doi: 10.3969/j.issn.1006-2106.2015.03.018
    [12] 戴鸿哲, 王伟, 吴灵宇.立式储液罐提离机理及"象足"变形产生原因[J].哈尔滨工业大学学报, 2008, 40(8):1189-1193. doi: 10.3321/j.issn:0367-6234.2008.08.003

    DAI Hongzhe, WANG Wei, WU Lingyu. Uplift mechanism and elephant foot bulging of elevated liquid-storage tank[J]. Journal of Harbin Institute of Technology, 2008, 40(8):1189-1193. doi: 10.3321/j.issn:0367-6234.2008.08.003
    [13] AGHAJARI S, ABEDI K, SHOWKATI H. Buckling and post-buckling behavior of thin-walled cylindrical steel shells with varying thickness subjected to uniform external pressure[J]. Thin-Walled Structures, 2006, 44(8):904-909. doi: 10.1016/j.tws.2006.08.015
    [14] HÜBNER A, TENG J G, SAAL H. Buckling behaviour of large steel cylinders with patterned welds[J]. International Journal of Pressure Vessels & Piping, 2006, 83(1):13-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026060501
    [15] 高富强, 张光雄, 杨军.爆破地震荷载作用下建筑结构的动力响应分析[J].爆破, 2015(1):5-10. http://d.old.wanfangdata.com.cn/Periodical/bp201501002

    GAO Fuqiang, ZHANG Guangxiong, YANG Jun. Dynamic response analysis of building structure under blasting seismic loads[J]. Blasting, 2015(1):5-10. http://d.old.wanfangdata.com.cn/Periodical/bp201501002
    [16] 李瑞涛.爆破地震波叠加规律实验研究[D].沈阳: 东北大学, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1844171
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  4635
  • HTML全文浏览量:  1453
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-20
  • 修回日期:  2017-09-18
  • 刊出日期:  2018-11-25

目录

    /

    返回文章
    返回