钛基纤维炸药水下爆炸性能的初步分析

陈海军 马宏昊 沈兆武 王波 杨明 崔宇

陈海军, 马宏昊, 沈兆武, 王波, 杨明, 崔宇. 钛基纤维炸药水下爆炸性能的初步分析[J]. 爆炸与冲击, 2018, 38(1): 9-18. doi: 10.11883/bzycj-2017-0155
引用本文: 陈海军, 马宏昊, 沈兆武, 王波, 杨明, 崔宇. 钛基纤维炸药水下爆炸性能的初步分析[J]. 爆炸与冲击, 2018, 38(1): 9-18. doi: 10.11883/bzycj-2017-0155
CHEN Haijun, MA Honghao, SHEN Zhaowu, WANG Bo, YANG Ming, CUI Yu. Preliminary analysis of underwater detonation performance of titanium fiber explosive[J]. Explosion And Shock Waves, 2018, 38(1): 9-18. doi: 10.11883/bzycj-2017-0155
Citation: CHEN Haijun, MA Honghao, SHEN Zhaowu, WANG Bo, YANG Ming, CUI Yu. Preliminary analysis of underwater detonation performance of titanium fiber explosive[J]. Explosion And Shock Waves, 2018, 38(1): 9-18. doi: 10.11883/bzycj-2017-0155

钛基纤维炸药水下爆炸性能的初步分析

doi: 10.11883/bzycj-2017-0155
基金项目: 

国家自然科学基金项目 51674229

国家自然科学基金项目 51374189

中国科学技术大学重要方向培育基金项目 WK2480000002

详细信息
    作者简介:

    陈海军(1993—),男,硕士研究生

    通讯作者:

    马宏昊, hhma@ustc.edu.cn

  • 中图分类号: O382.1

Preliminary analysis of underwater detonation performance of titanium fiber explosive

  • 摘要: 通过爆炸压力时程曲线分析含钛纤维炸药的压力峰值、水下比冲击波能、比气泡能、质量能量及能量密度变化趋势,通过对所得能量结果分析钛纤维炸药的化学反应过程。结果表明:含钛纤维炸药的压力峰值、比冲击波能随钛纤维含量的提高而降低,比气泡能随钛纤维含量的提高而增大,质量能量及能量密度都随钛纤维含量的提高而增大。随距离的增大,钛纤维炸药压力峰值衰减比RDX的慢,而不同钛纤维含量的钛纤维炸药的比冲击波能、比气泡能在不同距离处随钛纤维含量变化趋势基本一致。根据炸药反应释放的总比能量进行理论分析,得出钛纤维炸药爆炸反应方程式。
  • 图  1  钛纤维和铝壳包覆的钛纤维炸药

    Figure  1.  Ti fiber and Ti fiber explosive coated by aluminum shell

    图  2  水下爆炸测量系统布局图

    Figure  2.  System of underwater explosions

    图  3  实验得到的钛纤维炸药水下冲击波压力时程曲线

    Figure  3.  History of pressure for underwater shock wave of Ti-fiber explosive by experiment

    图  4  钛纤维炸药水下爆炸压力对数时程曲线

    Figure  4.  History of logarithmic pressure for underwater explosion of Ti-fiber explosive

    图  5  钛纤维炸药水下爆炸压力时程拟合曲线

    Figure  5.  Fitted history of pressure for underwater shock wave of Ti-fiber explosive

    图  6  钛纤维炸药压力峰值与钛纤维质量分数关系

    Figure  6.  Relationship between the shock wave peak pressure and the mass fraction of Ti fiber

    图  7  比冲击波能与钛纤维质量分数关系

    Figure  7.  Relationship between the shock wave energy per unit mass and the mass fraction of Ti fiber

    图  8  比气泡能与钛纤维质量分数关系

    Figure  8.  Relationship between the bubble energy per unit mass and the mass fraction of Ti fiber

    图  9  总比能量与钛纤维质量分数关系

    Figure  9.  Relationship between the total energy per unit mass and the mass fraction of Ti fiber

    图  10  能量密度与钛纤维质量分数关系

    Figure  10.  Relationship between the energy per unit volume and the mass fraction of Ti fiber

    表  1  含钛纤维炸药配方

    Table  1.   The formulation of Ti fiber explosive

    序号 φ/%
    RDX Ti wax
    1 95 0 5
    2 95 5 0
    3 90 10 0
    4 85 15 0
    下载: 导出CSV

    表  2  含钛纤维炸药在不同距离处各质量分数下的压力峰值

    Table  2.   The peak pressure of Ti-fiber explosive at different distances and different mass fraction

    R/m pm/MPa
    φ(Ti)=0% φ(Ti)=5% φ(Ti)=10% φ(Ti)=15%
    1.0 8.76 7.21 6.91 6.75
    1.2 6.57 6.41 6.29 6.23
    下载: 导出CSV

    表  3  含钛纤维炸药在不同距离处各质量分数下的压力峰值降低百分比

    Table  3.   Percentage reduction in peak pressure of Ti-fiber explosive at different distances and different mass fraction

    R/m (pm(0)-pm(5%))/pm(0) (pm(5%)-pm(10%))/pm(5%) (pm(10%)-pm(15%))/pm(10%)
    φ(Ti)=5% φ(Ti)=10% φ(Ti)=15%
    1.0 17.69% 4.16% 2.32%
    1.2 2.44% 1.87% 0.95%
    下载: 导出CSV
  • [1] 陈朗, 龙新平, 冯长根, 等.含铝炸药爆轰[M].北京:国防工业出版社, 2004:1-2.
    [2] 冯晓军, 王晓峰, 徐洪涛, 等.Al粉对炸药爆炸加速能力的影响[J].火炸药学报, 2014, 37(5):25-32. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201405006&dbname=CJFD&dbcode=CJFQ

    FENG Xiaojun, WANG Xiaofeng, XU Hongtao, et al. Influence of Al powder on the explosion acceleration ability for explosives[J]. Chinese Journal of Explosives & Propellants, 2014, 37(5):25-32. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201405006&dbname=CJFD&dbcode=CJFQ
    [3] 周俊祥, 于国辉, 李澎, 等.RDX/Al含铝炸药水下爆炸实验研究[J].爆破, 2005, 22(2):4-10. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bopo200502002&dbname=CJFD&dbcode=CJFQ

    ZHOU Junxiang, YU Guohui, LI Peng, et al. Experimental study of the aluminized explosive RDX/Al explosion underwater[J]. Blasting, 2005, 22(2):4-10. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bopo200502002&dbname=CJFD&dbcode=CJFQ
    [4] MAKHOV M N. Effect of aluminum and boron additives on the heat of explosion and acceleration ability of high explosives[J]. Russian Journal of Physical Chemistry B, 2015, 9(1):50-55. doi: 10.1134/S199079311501008X
    [5] 黄亚峰, 王晓峰, 赵东奎.RDX基含硼炸药的能量特性[J].火炸药学报, 2015, 38(2):39-42. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201502008&dbname=CJFD&dbcode=CJFQ

    HUANG Yafeng, WANG Xiaofeng, ZHAO Dongkui. Energy characteristics of RDX-based boron-contained explosive[J]. Chinese Journal of Explosives & Propellants, 2015, 38(2):39-42. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201502008&dbname=CJFD&dbcode=CJFQ
    [6] 许国栋, 王桂生.钛金属和钛产业的发展[J].稀有金属, 2009, 33(6):903-912. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zxjs200906029&dbname=CJFD&dbcode=CJFQ

    XU Guodong, WANG Guisheng. Development of titanium and its industry[J]. Chinese Journal of Rare Metals, 2009, 33(6):903-912. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zxjs200906029&dbname=CJFD&dbcode=CJFQ
    [7] 奥尔连科Л П. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011: 608-609.
    [8] ETHRIDGE N. A procedure for reading and smoothing pressure-time data from HE and nuclear explosions[R]. Maryland: Army Ballistic Research Laboratories, 1965.
    [9] 谈庆明.量纲分析[M].合肥:中国科学技术大学出版社, 2005:100-104.
    [10] KOMISSAROV P V, BORISOV A A, SOKOLOV G N, et al. Experimental comparison of shock and bubble heave energies from underwater explosion of ideal HE and explosive composite mixtures highly enriched with aluminum[J]. Physics Procedia, 2015, 72:18-20. http://www.sciencedirect.com/science/article/pii/S1875389215012754
    [11] 王光祖.超硬材料制造与应用技术[M].郑州:郑州大学出版社, 2013:550-558.
    [12] 王杏, 魏唯濂, 魏绍东.纳米二氧化钛的生产与应用[M].贵州:贵州科技出版社, 2014:19-24.
    [13] 古滨, 陈博韬, 李烨.反舰导弹战斗部破片对不同材料舰船结构的毁伤研究[J].舰船科学技术, 2016, 38(1):19-23. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jckx201601004&dbname=CJFD&dbcode=CJFQ

    GU Bin, CHEN Botao, LI Ye. Research on damage effect for vessel structures with various attributes from warhead fragments of anti-ship missile[J]. Ship Science and Technology, 2016, 38(1):19-23. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jckx201601004&dbname=CJFD&dbcode=CJFQ
    [14] 孙业斌, 惠君明, 曹欣茂.军用混合炸药[M].北京:兵器工业出版社, 1995:98-99.
    [15] 林谋金. 铝纤维炸药爆炸性能与力学性能研究[D]. 合肥: 中国科学技术大学, 2014: 50-69. http://cdmd.cnki.com.cn/Article/CDMD-10358-1014299824.htm
    [16] 项大林, 荣吉利, 李健.金属壳体装药水下爆炸的冲击波特性[J].爆炸与冲击, 2012, 32(1):67-71. http://www.bzycj.cn/CN/abstract/abstract8615.shtml

    XIANG Dalin, RONG Jili, LI Jian. Shock wave features of underwater explosion of explosives with metal shell[J]. Explosion and Shock Waves, 2012, 32(1):67-71. http://www.bzycj.cn/CN/abstract/abstract8615.shtml
    [17] 金韶华, 松全才.炸药理论[M].西安:西北工业大学出版社, 2010:25-28.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  5578
  • HTML全文浏览量:  1289
  • PDF下载量:  433
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-04
  • 修回日期:  2017-10-09
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回